Using Goal-Conditioned Reinforcement Learning With Deep Imitation to Control Robot Arm in Flexible Flat Cable Assembly Task

强化学习 事后诸葛亮 杠杆(统计) 机器人 计算机科学 人工智能 模仿 任务(项目管理) 机械臂 机器人学习 机器人末端执行器 人机交互 模拟 机器学习 工程类 移动机器人 心理学 社会心理学 系统工程 认知心理学
作者
Jingchen Li,Haobin Shi,Kao‐Shing Hwang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6217-6228 被引量:9
标识
DOI:10.1109/tase.2023.3323307
摘要

Leveraging reinforcement learning on high-precision decision-making in Robot Arm assembly scenes is a desired goal in the industrial community. However, tasks like Flexible Flat Cable (FFC) assembly, which require highly trained workers, pose significant challenges due to sparse rewards and limited learning conditions. In this work, we propose a goal-conditioned self-imitation reinforcement learning method for FFC assembly without relying on a specific end-effector, where both perception and behavior plannings are learned through reinforcement learning. We analyze the challenges faced by Robot Arm in high-precision assembly scenarios and balance the breadth and depth of exploration during training. Our end-to-end model consists of hindsight and self-imitation modules, allowing the Robot Arm to leverage futile exploration and optimize successful trajectories. Our method does not require rule-based or manual rewards, and it enables the Robot Arm to quickly find feasible solutions through experience relabeling, while unnecessary explorations are avoided. We train the FFC assembly policy in a simulation environment and transfer it to the real scenario by using domain adaptation. We explore various combinations of hindsight and self-imitation learning, and discuss the results comprehensively. Experimental findings demonstrate that our model achieves fast and advanced flexible flat cable assembly, surpassing other reinforcement learning-based methods. Note to Practitioners —The motivation of this article stems from the need to develop an efficient and accurate FFC assembly policy for 3C (Computer, Communication, and Consumer Electronic) industry, promoting the development of intelligent manufacturing. Traditional control methods are incompetent to complete such a high-precision task with Robot Arm due to the difficult-to-model connectors, and existing reinforcement learning methods cannot converge with restricted epochs because of the difficult goals or trajectories. To quickly learn a high-quality assembly for Robot Arm and accelerate the convergence speed, we combine the goal-conditioned reinforcement learning and self-imitation mechanism, balancing the depth and breadth of exploration. The proposal takes visual information and six-dimensions force as state, obtaining satisfactory assembly policies. We build a simulation scene by the Pybullet platform and pre-train the Robot Arm on it, and then the pre-trained policies can be reused in real scenarios with finetuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qda关闭了qda文献求助
刚刚
科研通AI6应助55555558采纳,获得10
刚刚
Owen应助野性的沉鱼采纳,获得10
1秒前
上官若男应助Nymeria采纳,获得30
1秒前
1秒前
唠叨的谷秋完成签到,获得积分20
1秒前
闪耀章鱼发布了新的文献求助10
1秒前
李文浩发布了新的文献求助10
2秒前
彭秋期完成签到,获得积分20
2秒前
一切皆有利于我完成签到,获得积分10
2秒前
2秒前
2秒前
归尘发布了新的文献求助10
2秒前
漂亮幻然完成签到,获得积分10
2秒前
2秒前
林夏完成签到,获得积分10
3秒前
爆米花应助我想静静采纳,获得100
3秒前
3秒前
3秒前
3秒前
4秒前
qweqwe完成签到,获得积分10
4秒前
沉默寄凡发布了新的文献求助10
4秒前
汤飞柏发布了新的文献求助10
5秒前
酷炫的忆山完成签到,获得积分10
5秒前
科研小白发布了新的文献求助10
5秒前
iAlvinz完成签到,获得积分10
5秒前
英俊的铭应助CCCC采纳,获得10
5秒前
5秒前
图图应助楼下太吵了采纳,获得10
5秒前
5秒前
光亮的万天完成签到 ,获得积分10
5秒前
小马甲应助李楠采纳,获得10
5秒前
6秒前
coin完成签到,获得积分10
6秒前
打打应助tango采纳,获得10
6秒前
王志杰发布了新的文献求助10
6秒前
热心海云发布了新的文献求助10
6秒前
桐桐应助min采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873