Using Goal-Conditioned Reinforcement Learning With Deep Imitation to Control Robot Arm in Flexible Flat Cable Assembly Task

强化学习 事后诸葛亮 杠杆(统计) 机器人 计算机科学 人工智能 模仿 任务(项目管理) 机械臂 机器人学习 机器人末端执行器 人机交互 模拟 机器学习 工程类 移动机器人 社会心理学 心理学 认知心理学 系统工程
作者
Jingchen Li,Haobin Shi,Kao‐Shing Hwang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6217-6228 被引量:9
标识
DOI:10.1109/tase.2023.3323307
摘要

Leveraging reinforcement learning on high-precision decision-making in Robot Arm assembly scenes is a desired goal in the industrial community. However, tasks like Flexible Flat Cable (FFC) assembly, which require highly trained workers, pose significant challenges due to sparse rewards and limited learning conditions. In this work, we propose a goal-conditioned self-imitation reinforcement learning method for FFC assembly without relying on a specific end-effector, where both perception and behavior plannings are learned through reinforcement learning. We analyze the challenges faced by Robot Arm in high-precision assembly scenarios and balance the breadth and depth of exploration during training. Our end-to-end model consists of hindsight and self-imitation modules, allowing the Robot Arm to leverage futile exploration and optimize successful trajectories. Our method does not require rule-based or manual rewards, and it enables the Robot Arm to quickly find feasible solutions through experience relabeling, while unnecessary explorations are avoided. We train the FFC assembly policy in a simulation environment and transfer it to the real scenario by using domain adaptation. We explore various combinations of hindsight and self-imitation learning, and discuss the results comprehensively. Experimental findings demonstrate that our model achieves fast and advanced flexible flat cable assembly, surpassing other reinforcement learning-based methods. Note to Practitioners —The motivation of this article stems from the need to develop an efficient and accurate FFC assembly policy for 3C (Computer, Communication, and Consumer Electronic) industry, promoting the development of intelligent manufacturing. Traditional control methods are incompetent to complete such a high-precision task with Robot Arm due to the difficult-to-model connectors, and existing reinforcement learning methods cannot converge with restricted epochs because of the difficult goals or trajectories. To quickly learn a high-quality assembly for Robot Arm and accelerate the convergence speed, we combine the goal-conditioned reinforcement learning and self-imitation mechanism, balancing the depth and breadth of exploration. The proposal takes visual information and six-dimensions force as state, obtaining satisfactory assembly policies. We build a simulation scene by the Pybullet platform and pre-train the Robot Arm on it, and then the pre-trained policies can be reused in real scenarios with finetuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
medlive2020发布了新的文献求助10
1秒前
1秒前
天天快乐应助Shaw采纳,获得10
2秒前
charon发布了新的文献求助10
2秒前
尔东发布了新的文献求助10
2秒前
spring完成签到,获得积分10
2秒前
于晓军发布了新的文献求助10
2秒前
mmr发布了新的文献求助10
3秒前
ywang发布了新的文献求助10
4秒前
4秒前
wjfjs2cd发布了新的文献求助10
5秒前
大模型应助earthclean采纳,获得10
5秒前
long应助疯狂的绮山采纳,获得10
5秒前
xiaoguang应助乌拉乌拉采纳,获得20
5秒前
噜啦啦发布了新的文献求助10
6秒前
天才罗发布了新的文献求助10
6秒前
6秒前
英俊的铭应助Fan采纳,获得10
6秒前
无花果应助陶醉的鹤轩采纳,获得30
7秒前
7秒前
8秒前
13728891737完成签到,获得积分10
9秒前
9秒前
able完成签到 ,获得积分10
9秒前
等待凡英发布了新的文献求助10
9秒前
10秒前
等待胜完成签到 ,获得积分10
10秒前
10秒前
Perrylin718发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
Owen应助wjfjs2cd采纳,获得10
12秒前
12秒前
Lucas应助我爱乒乓球采纳,获得30
13秒前
小马甲应助甜甜的凝安采纳,获得150
13秒前
莫宝应助123...采纳,获得10
13秒前
zoro发布了新的文献求助30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950123
求助须知:如何正确求助?哪些是违规求助? 4213072
关于积分的说明 13102608
捐赠科研通 3994857
什么是DOI,文献DOI怎么找? 2186618
邀请新用户注册赠送积分活动 1201904
关于科研通互助平台的介绍 1115269