Using Goal-Conditioned Reinforcement Learning With Deep Imitation to Control Robot Arm in Flexible Flat Cable Assembly Task

强化学习 事后诸葛亮 杠杆(统计) 机器人 计算机科学 人工智能 模仿 任务(项目管理) 机械臂 机器人学习 机器人末端执行器 人机交互 模拟 机器学习 工程类 移动机器人 心理学 社会心理学 系统工程 认知心理学
作者
Jingchen Li,Haobin Shi,Kao‐Shing Hwang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6217-6228 被引量:4
标识
DOI:10.1109/tase.2023.3323307
摘要

Leveraging reinforcement learning on high-precision decision-making in Robot Arm assembly scenes is a desired goal in the industrial community. However, tasks like Flexible Flat Cable (FFC) assembly, which require highly trained workers, pose significant challenges due to sparse rewards and limited learning conditions. In this work, we propose a goal-conditioned self-imitation reinforcement learning method for FFC assembly without relying on a specific end-effector, where both perception and behavior plannings are learned through reinforcement learning. We analyze the challenges faced by Robot Arm in high-precision assembly scenarios and balance the breadth and depth of exploration during training. Our end-to-end model consists of hindsight and self-imitation modules, allowing the Robot Arm to leverage futile exploration and optimize successful trajectories. Our method does not require rule-based or manual rewards, and it enables the Robot Arm to quickly find feasible solutions through experience relabeling, while unnecessary explorations are avoided. We train the FFC assembly policy in a simulation environment and transfer it to the real scenario by using domain adaptation. We explore various combinations of hindsight and self-imitation learning, and discuss the results comprehensively. Experimental findings demonstrate that our model achieves fast and advanced flexible flat cable assembly, surpassing other reinforcement learning-based methods. Note to Practitioners —The motivation of this article stems from the need to develop an efficient and accurate FFC assembly policy for 3C (Computer, Communication, and Consumer Electronic) industry, promoting the development of intelligent manufacturing. Traditional control methods are incompetent to complete such a high-precision task with Robot Arm due to the difficult-to-model connectors, and existing reinforcement learning methods cannot converge with restricted epochs because of the difficult goals or trajectories. To quickly learn a high-quality assembly for Robot Arm and accelerate the convergence speed, we combine the goal-conditioned reinforcement learning and self-imitation mechanism, balancing the depth and breadth of exploration. The proposal takes visual information and six-dimensions force as state, obtaining satisfactory assembly policies. We build a simulation scene by the Pybullet platform and pre-train the Robot Arm on it, and then the pre-trained policies can be reused in real scenarios with finetuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助清秀的以云采纳,获得30
刚刚
李健的粉丝团团长应助xx采纳,获得10
2秒前
大豪子发布了新的文献求助30
2秒前
李繁蕊发布了新的文献求助10
2秒前
6秒前
6秒前
6秒前
6秒前
橘柚完成签到 ,获得积分10
7秒前
zmmmm发布了新的文献求助10
7秒前
领导范儿应助温言采纳,获得10
7秒前
思源应助OvO采纳,获得10
9秒前
迷糊发布了新的文献求助30
10秒前
LY发布了新的文献求助10
11秒前
zzz完成签到,获得积分10
11秒前
KimJongUn完成签到,获得积分10
11秒前
13秒前
13秒前
zy完成签到,获得积分10
14秒前
开心果子发布了新的文献求助10
14秒前
云痴子完成签到,获得积分10
15秒前
SciGPT应助粥粥采纳,获得10
15秒前
15秒前
15秒前
16秒前
苏源完成签到,获得积分10
16秒前
wu关闭了wu文献求助
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
18秒前
Shawn完成签到,获得积分10
19秒前
yltstt完成签到,获得积分10
20秒前
李小新发布了新的文献求助10
20秒前
成梦发布了新的文献求助10
21秒前
乐乐应助xuex1采纳,获得10
21秒前
蜂鸟5156发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808