Using Goal-Conditioned Reinforcement Learning With Deep Imitation to Control Robot Arm in Flexible Flat Cable Assembly Task

强化学习 事后诸葛亮 杠杆(统计) 机器人 计算机科学 人工智能 模仿 任务(项目管理) 机械臂 机器人学习 机器人末端执行器 人机交互 模拟 机器学习 工程类 移动机器人 心理学 社会心理学 系统工程 认知心理学
作者
Jingchen Li,Haobin Shi,Kao‐Shing Hwang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6217-6228 被引量:9
标识
DOI:10.1109/tase.2023.3323307
摘要

Leveraging reinforcement learning on high-precision decision-making in Robot Arm assembly scenes is a desired goal in the industrial community. However, tasks like Flexible Flat Cable (FFC) assembly, which require highly trained workers, pose significant challenges due to sparse rewards and limited learning conditions. In this work, we propose a goal-conditioned self-imitation reinforcement learning method for FFC assembly without relying on a specific end-effector, where both perception and behavior plannings are learned through reinforcement learning. We analyze the challenges faced by Robot Arm in high-precision assembly scenarios and balance the breadth and depth of exploration during training. Our end-to-end model consists of hindsight and self-imitation modules, allowing the Robot Arm to leverage futile exploration and optimize successful trajectories. Our method does not require rule-based or manual rewards, and it enables the Robot Arm to quickly find feasible solutions through experience relabeling, while unnecessary explorations are avoided. We train the FFC assembly policy in a simulation environment and transfer it to the real scenario by using domain adaptation. We explore various combinations of hindsight and self-imitation learning, and discuss the results comprehensively. Experimental findings demonstrate that our model achieves fast and advanced flexible flat cable assembly, surpassing other reinforcement learning-based methods. Note to Practitioners —The motivation of this article stems from the need to develop an efficient and accurate FFC assembly policy for 3C (Computer, Communication, and Consumer Electronic) industry, promoting the development of intelligent manufacturing. Traditional control methods are incompetent to complete such a high-precision task with Robot Arm due to the difficult-to-model connectors, and existing reinforcement learning methods cannot converge with restricted epochs because of the difficult goals or trajectories. To quickly learn a high-quality assembly for Robot Arm and accelerate the convergence speed, we combine the goal-conditioned reinforcement learning and self-imitation mechanism, balancing the depth and breadth of exploration. The proposal takes visual information and six-dimensions force as state, obtaining satisfactory assembly policies. We build a simulation scene by the Pybullet platform and pre-train the Robot Arm on it, and then the pre-trained policies can be reused in real scenarios with finetuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零几年发布了新的文献求助10
刚刚
天苍野茫发布了新的文献求助10
1秒前
2秒前
善学以致用应助stefanie采纳,获得10
3秒前
KKKKKKK完成签到 ,获得积分10
4秒前
杨皓婷完成签到,获得积分10
5秒前
情怀应助心平气和采纳,获得20
6秒前
6秒前
7秒前
sinsole完成签到,获得积分10
7秒前
7秒前
8秒前
11秒前
漫才完成签到 ,获得积分10
11秒前
故里完成签到,获得积分10
11秒前
12秒前
菜鸡小尹发布了新的文献求助10
12秒前
Lynth_雪鸮发布了新的文献求助10
12秒前
12秒前
shidewu完成签到,获得积分10
12秒前
13秒前
Owen应助咦yiyi采纳,获得10
13秒前
祖金杰完成签到,获得积分20
13秒前
健壮的小之完成签到,获得积分10
14秒前
14秒前
afatinib完成签到,获得积分10
14秒前
15秒前
15秒前
DI发布了新的文献求助10
15秒前
余芝完成签到 ,获得积分10
15秒前
deserted完成签到,获得积分10
17秒前
菜鸡小尹完成签到,获得积分10
17秒前
大模型应助杨涵采纳,获得10
18秒前
18秒前
心平气和发布了新的文献求助20
18秒前
Suraim完成签到,获得积分10
19秒前
大菊完成签到,获得积分10
19秒前
19秒前
零几年完成签到,获得积分10
20秒前
阅遍SCI完成签到,获得积分10
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672