亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Driver-Aide Problem: Coordinated Logistics for Last-Mile Delivery

最后一英里(运输) 跳跃者 计算机科学 卡车 布线(电子设计自动化) 运筹学 集合(抽象数据类型) 服务(商务) 工作(物理) 英里 运营管理 运输工程 计算机网络 业务 工程类 机械工程 操作系统 物理 航空航天工程 营销 程序设计语言 天文
作者
S. Raghavan,Rui Zhang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (1): 291-311 被引量:11
标识
DOI:10.1287/msom.2022.0211
摘要

Problem definition: Last-mile delivery is a critical component of logistics networks, accounting for approximately 30%–35% of costs. As delivery volumes have increased, truck route times have become unsustainably long. To address this issue, many logistics companies, including FedEx and UPS, have resorted to using a “driver aide” to assist with deliveries. The aide can assist the driver in two ways. As a “jumper,” the aide works with the driver in preparing and delivering packages, thus reducing the service time at a given stop. As a “helper,” the aide can independently work at a location delivering packages, and the driver can leave to deliver packages at other locations and then return. Given a set of delivery locations, travel times, service times, jumper’s savings, and helper’s service times, the goal is to determine both the delivery route and the most effective way to use the aide (e.g., sometimes as a jumper and sometimes as a helper) to minimize the total routing time. Methodology/results: We model this problem as an integer program with an exponential number of variables and an exponential number of constraints and propose a branch-cut-and-price approach for solving it. Our computational experiments are based on simulated instances built on real-world data provided by an industrial partner and a data set released by Amazon. The instances based on the Amazon data set show that this novel operation can lead to, on average, a 35.8% reduction in routing time and 22.0% in cost savings. More importantly, our results characterize the conditions under which this novel operation mode can lead to significant savings in terms of both the routing time and cost. Managerial implications: Our computational results show that the driver aide with both jumper and helper modes is most effective when there are denser service regions and when the truck’s speed is higher (≥10 miles per hour). Coupled with an economic analysis, we come up with rules of thumb (that have close to 100% accuracy) to predict whether to use the aide and in which mode. Empirically, we find that the service delivery routes with greater than 50% of the time devoted to delivery (as opposed to driving) are the ones that provide the greatest benefit. These routes are characterized by a high density of delivery locations. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.0211 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
愤怒的小鸽子完成签到,获得积分10
2秒前
周美言完成签到,获得积分10
2秒前
李爱国应助王珺采纳,获得10
3秒前
小杨完成签到,获得积分10
3秒前
5秒前
7秒前
洁净的鹏煊完成签到,获得积分20
12秒前
JLL丽丽发布了新的文献求助10
13秒前
赵寒迟完成签到 ,获得积分10
18秒前
Alphaz9918完成签到,获得积分10
20秒前
singber完成签到,获得积分10
21秒前
yuu应助JLL丽丽采纳,获得10
24秒前
26秒前
Oculus完成签到 ,获得积分10
27秒前
科研蓝月发布了新的文献求助10
29秒前
31秒前
玉米之路发布了新的文献求助10
33秒前
35秒前
王珺发布了新的文献求助10
40秒前
41秒前
42秒前
44秒前
干净雅旋发布了新的文献求助10
46秒前
白华苍松发布了新的文献求助10
46秒前
jessie完成签到,获得积分10
48秒前
JianDan完成签到,获得积分20
54秒前
55秒前
1分钟前
江随烨完成签到,获得积分10
1分钟前
干净雅旋完成签到,获得积分10
1分钟前
Jasper应助满君清采纳,获得10
1分钟前
专注妙松发布了新的文献求助10
1分钟前
JianDan发布了新的文献求助30
1分钟前
踏实沂完成签到 ,获得积分10
1分钟前
大模型应助义气的水蓝采纳,获得30
1分钟前
科研通AI6应助momo采纳,获得10
1分钟前
SciGPT应助11采纳,获得10
1分钟前
1分钟前
芊芊完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498050
求助须知:如何正确求助?哪些是违规求助? 4595410
关于积分的说明 14449067
捐赠科研通 4528164
什么是DOI,文献DOI怎么找? 2481373
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283