The Driver-Aide Problem: Coordinated Logistics for Last-Mile Delivery

最后一英里(运输) 跳跃者 计算机科学 卡车 布线(电子设计自动化) 运筹学 集合(抽象数据类型) 服务(商务) 工作(物理) 英里 运营管理 运输工程 计算机网络 业务 工程类 机械工程 操作系统 物理 航空航天工程 营销 程序设计语言 天文
作者
S. Raghavan,Rui Zhang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (1): 291-311 被引量:3
标识
DOI:10.1287/msom.2022.0211
摘要

Problem definition: Last-mile delivery is a critical component of logistics networks, accounting for approximately 30%–35% of costs. As delivery volumes have increased, truck route times have become unsustainably long. To address this issue, many logistics companies, including FedEx and UPS, have resorted to using a “driver aide” to assist with deliveries. The aide can assist the driver in two ways. As a “jumper,” the aide works with the driver in preparing and delivering packages, thus reducing the service time at a given stop. As a “helper,” the aide can independently work at a location delivering packages, and the driver can leave to deliver packages at other locations and then return. Given a set of delivery locations, travel times, service times, jumper’s savings, and helper’s service times, the goal is to determine both the delivery route and the most effective way to use the aide (e.g., sometimes as a jumper and sometimes as a helper) to minimize the total routing time. Methodology/results: We model this problem as an integer program with an exponential number of variables and an exponential number of constraints and propose a branch-cut-and-price approach for solving it. Our computational experiments are based on simulated instances built on real-world data provided by an industrial partner and a data set released by Amazon. The instances based on the Amazon data set show that this novel operation can lead to, on average, a 35.8% reduction in routing time and 22.0% in cost savings. More importantly, our results characterize the conditions under which this novel operation mode can lead to significant savings in terms of both the routing time and cost. Managerial implications: Our computational results show that the driver aide with both jumper and helper modes is most effective when there are denser service regions and when the truck’s speed is higher (≥10 miles per hour). Coupled with an economic analysis, we come up with rules of thumb (that have close to 100% accuracy) to predict whether to use the aide and in which mode. Empirically, we find that the service delivery routes with greater than 50% of the time devoted to delivery (as opposed to driving) are the ones that provide the greatest benefit. These routes are characterized by a high density of delivery locations. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.0211 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LSH970829完成签到,获得积分10
刚刚
Lyg完成签到,获得积分20
1秒前
坚强的樱发布了新的文献求助10
1秒前
baodingning完成签到,获得积分10
2秒前
2秒前
公茂源发布了新的文献求助30
2秒前
热爱完成签到,获得积分10
3秒前
4秒前
叫滚滚发布了新的文献求助10
5秒前
星瑆心完成签到,获得积分10
5秒前
啦啦啦啦啦完成签到,获得积分10
6秒前
Lyg发布了新的文献求助10
6秒前
Dksido完成签到,获得积分10
7秒前
兰博基尼奥完成签到,获得积分10
7秒前
热情芷荷发布了新的文献求助10
9秒前
random完成签到,获得积分10
10秒前
10秒前
果果瑞宁完成签到,获得积分10
10秒前
11秒前
机智小虾米完成签到,获得积分20
11秒前
goldenfleece完成签到,获得积分10
12秒前
科研通AI2S应助学者采纳,获得10
12秒前
小杨完成签到,获得积分10
13秒前
sutharsons应助科研通管家采纳,获得30
14秒前
14秒前
Ava应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得30
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
Eric_Lee2000应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
14秒前
王子完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808