Predicting Students’ Performance Employing Educational Data Mining Techniques, Machine Learning, and Learning Analytics

计算机科学 数据科学 集合(抽象数据类型) 教育数据挖掘 分析 学习分析 选择(遗传算法) 机器学习 人工智能 程序设计语言
作者
Ashraf Alam,Atasi Mohanty
出处
期刊:Communications in computer and information science 卷期号:: 166-177 被引量:7
标识
DOI:10.1007/978-3-031-43140-1_15
摘要

Student success is important in colleges and universities since it is often used as a measure of the institution’s effectiveness. Identifying at-risk students early on and implementing preventative measures might have a major impact on their academic performance. In recent years, predictions made using machine learning techniques have become more common. Although there are many examples of successful utilization of data mining techniques in academic literature, these methods are frequently restricted to educators with expertise in computer science or, more specifically, artificial intelligence. Before implementing an effective data mining strategy, there are several decisions that must be made, such as defining student achievement, identifying important student characteristics, and selecting the most suitable machine learning approach for the particular issue. The objective of this investigation is to offer a complete set of instructions for educators interested in utilizing data mining techniques to predict student performance. To achieve this goal, we have analyzed the relevant literature and compiled the current state of the art into a methodical approach in which all the options and parameters are discussed at length and rationales have been given for their selection. By lowering the barrier to entry for data mining tools, this initiative will unleash their full potential for usage in the classroom.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
刚刚
卡戎529发布了新的文献求助10
1秒前
砂砾完成签到,获得积分10
1秒前
2秒前
3秒前
北辰完成签到,获得积分10
3秒前
外向沅完成签到,获得积分10
3秒前
kk发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
茜茜发布了新的文献求助10
7秒前
标致善愁完成签到,获得积分10
8秒前
8秒前
kk关闭了kk文献求助
10秒前
生动依白发布了新的文献求助10
10秒前
11秒前
难过的小甜瓜完成签到,获得积分10
11秒前
11秒前
LN发布了新的文献求助10
13秒前
13秒前
华子的五A替身完成签到,获得积分10
13秒前
13秒前
14秒前
昵称发布了新的文献求助80
16秒前
16秒前
HEIKU应助kk采纳,获得10
18秒前
JinwenShi发布了新的文献求助10
18秒前
19秒前
19秒前
21秒前
21秒前
ws发布了新的文献求助10
22秒前
cc关注了科研通微信公众号
22秒前
大个应助义气的灯泡采纳,获得10
22秒前
24秒前
hulu完成签到,获得积分10
24秒前
朴实若灵发布了新的文献求助20
25秒前
25秒前
ws完成签到,获得积分20
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138618
求助须知:如何正确求助?哪些是违规求助? 2789599
关于积分的说明 7791655
捐赠科研通 2445949
什么是DOI,文献DOI怎么找? 1300780
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079