Robust Vehicle Mass Estimation Using Recursive Least M-Squares Algorithm for Intelligent Vehicles

稳健性(进化) 估计员 算法 递归最小平方滤波器 计算机科学 趋同(经济学) 控制理论(社会学) 还原(数学) 数学 人工智能 统计 控制(管理) 生物化学 化学 几何学 自适应滤波器 经济 基因 经济增长
作者
Wai Tong Chor,Chee Pin Tan,A. S. M. Bakibillah,Ziyuan Pu,Junn Yong Loo
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 165-177
标识
DOI:10.1109/tiv.2023.3318972
摘要

A practical and reliable online vehicle mass estimation scheme is crucial to effectively control an automated and intelligent vehicle. The Recursive Least Squares with Multiple Forgetting Factors (RLSMFF) algorithm has been shown to demonstrate great accuracy and computational efficiency in estimating vehicle mass. Nevertheless, our analysis on the convexity and convergence of the RLSMFF algorithm revealed significant inaccuracies at low sampling rates, as well as an estimation bias when the initial estimate is poor. Thus, the RLSMFF needs high-frequency data and an accurate initial estimate (both which could be challenging to obtain) to generate an accurate estimate. Additionally, the robustness of the RLSMFF algorithm to impulsive disturbances (such as braking, which is a common and inevitable driving maneuver) remains a challenge. To address the aforementioned issues, this paper proposes a robust Recursive Least M-Squares with Multiple Forgetting Factors (RLM-SMFF) algorithm for reliable vehicle mass estimation in the presence of impulsive disturbance. In particular, a restructured longitudinal dynamics model and a bias reduction strategy are introduced to enhance the accuracy of the mass estimation even when the sampling rate is low. An M-estimator is incorporated to suppress the effects of the impulsive disturbance. The stability of our proposed algorithm is also verified mathematically. We evaluated our proposed algorithm using extensive simulations, which showed that our method demonstrates superior accuracy compared to existing mass estimation algorithms, at low computational demand.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助marinemiao采纳,获得10
2秒前
2秒前
招财不肥发布了新的文献求助10
3秒前
网安真难T_T完成签到,获得积分10
3秒前
大土豆子完成签到,获得积分10
4秒前
4秒前
甜甜醉波发布了新的文献求助10
5秒前
CodeCraft应助jy采纳,获得10
5秒前
领导范儿应助睡睡采纳,获得10
5秒前
哈哈完成签到 ,获得积分10
6秒前
Holleay123发布了新的文献求助10
7秒前
7秒前
8秒前
苏卿应助kento采纳,获得100
8秒前
小马甲应助满意之玉采纳,获得10
8秒前
9秒前
Jing完成签到,获得积分10
10秒前
饕餮发布了新的文献求助10
10秒前
11秒前
11秒前
wqy完成签到,获得积分10
11秒前
犹豫的戎完成签到,获得积分20
11秒前
狗子完成签到 ,获得积分10
12秒前
CodeCraft应助小小飞采纳,获得10
12秒前
JamesPei应助JUSTs0so采纳,获得10
14秒前
Beth完成签到,获得积分10
14秒前
粥粥发布了新的文献求助10
15秒前
15秒前
庞威完成签到 ,获得积分10
15秒前
16秒前
吕春雨完成签到,获得积分10
16秒前
Grayball应助ccc采纳,获得10
16秒前
17秒前
17秒前
勖勖完成签到,获得积分10
17秒前
邵裘发布了新的文献求助10
17秒前
17秒前
饕餮完成签到,获得积分10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808