Examining Seasonal Changes in Light-Vehicle Traffic Volume on Freeways Under Extreme Weather Conditions: A Combination of Temporal Statistical and Data Mining Non-Parametric Techniques

能见度 非参数统计 环境科学 决策树 流量(计算机网络) 计算机科学 气象站 参数统计 差异(会计) 气象学 统计 地理 数据挖掘 数学 计算机安全 会计 业务
作者
Meysam Effati,Chakavak Atrchian
出处
期刊:Transportation Research Record [SAGE]
卷期号:2678 (7): 50-69 被引量:2
标识
DOI:10.1177/03611981231203217
摘要

Today, with the increasing changes in weather patterns and the huge amount of data related to weather and traffic in different parts of the freeway network, the use of data mining methods to quantify the impact of weather on traffic flow is inevitable. The main objective of this study is to present a geostatistical method for computing and analyzing the effects of base and extreme cases of weather variables on light-vehicle traffic volumes on freeways, with an emphasis on temporal changes on different days of the week and between daytime and nighttime. In the proposed method for statistical analysis, the parametric test of two-way analysis of variance was used. In the following, with the development of a nonparametric method based on the classification and regression tree (CART) decision tree algorithm, the weather-related parameters with the greatest effect on traffic volumes were investigated separately for different seasons. For this purpose, nine years of statistics covering traffic and weather data for the studied freeway were analyzed. The computational results show that a fall in temperature of more than 35% on weekdays during the cold season and the parameters of horizontal visibility and rainfall during the day and temperature during the night in the spring cause a reduction of traffic volume of more than 45%. This study has shown that the combination of data-driven parametric and nonparametric data mining techniques is effective for traffic managers in planning and traffic control under extreme weather conditions. In this regard, an adverse weather conditions dynamic message sign (AWCDMS) framework was proposed as a practical way to warn drivers of adverse weather.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助CXE采纳,获得10
刚刚
爱唱歌的yu仔完成签到,获得积分10
1秒前
许小仙儿完成签到,获得积分10
1秒前
theverve发布了新的文献求助10
2秒前
3秒前
3秒前
科研通AI2S应助多肉葡萄采纳,获得10
3秒前
5秒前
6秒前
6秒前
热心的寒天完成签到,获得积分10
6秒前
山橘月完成签到,获得积分10
6秒前
7秒前
7秒前
WXT完成签到,获得积分10
7秒前
7秒前
天天快乐应助faith采纳,获得10
8秒前
沉默的书琴完成签到,获得积分10
9秒前
9秒前
搜集达人应助耿继生采纳,获得10
9秒前
10秒前
11秒前
11秒前
坚若磐石完成签到,获得积分10
12秒前
faith完成签到,获得积分10
12秒前
fgh发布了新的文献求助10
13秒前
二号发布了新的文献求助10
13秒前
山橘月发布了新的文献求助10
13秒前
Lucas应助yy采纳,获得10
14秒前
Jenny完成签到,获得积分10
15秒前
寻找发布了新的文献求助10
15秒前
早睡身体好完成签到 ,获得积分10
15秒前
共享精神应助zjq采纳,获得10
15秒前
16秒前
16秒前
splash发布了新的文献求助10
16秒前
夜阑卧听发布了新的文献求助10
16秒前
研友_VZG7GZ应助Alias1234采纳,获得10
17秒前
ding应助二号采纳,获得10
18秒前
游悠悠完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146066
求助须知:如何正确求助?哪些是违规求助? 2797486
关于积分的说明 7824486
捐赠科研通 2453874
什么是DOI,文献DOI怎么找? 1305891
科研通“疑难数据库(出版商)”最低求助积分说明 627598
版权声明 601491