双功能
过电位
电催化剂
制氢
联氨(抗抑郁剂)
析氧
电解
化学
分解水
电解水
化学工程
无机化学
材料科学
氢
催化作用
电化学
电极
有机化学
电解质
物理化学
光催化
色谱法
工程类
作者
Raja Arumugam Senthil,Sieon Jung,Ahreum Min,Cheol Joo Moon,Myong Yong Choi
标识
DOI:10.1016/j.cej.2023.146441
摘要
Hydrazine-assisted water electrolysis has gained much attention nowadays as an energy-saving strategy for the large-scale production of hydrogen fuel. Regardless, the synthesis of highly proficient bifunctional electrocatalysts remains a major challenge. Metal–organic frameworks (MOF) derived electrocatalysts have recently demonstrated excellent bifunctional activity in water electrolysis. Herein, we developed a new type of Ru-MOF on rod-like Co-MOF (Ru/Co-MOF) microstructures via a two-step solvothermal route. Subsequently, the Ru/Co-MOF was used as a precursor and self-template to synthesize an electrocatalytically active RuO2/Co3O4 anchored nitrogen-doped carbon (RuCoOx@NC) composite via a one-pot pyrolysis–oxidation strategy under atmospheric air. The RuCoOx@NC composite showed an ultralow overpotential of 44 mV for the hydrogen evolution reaction and 255 mV for the oxygen evolution reaction at 10 mA cm−2 in a 1 M KOH solution. Besides, the RuCoOx@NC composite exhibited an ultra-small working potential of − 0.040 V (vs. reversible hydrogen electrode (RHE)) for the hydrazine oxidation reaction at 10 mA cm−2 in a 1 M KOH/0.5 M hydrazine solution. The assembled RuCoOx@NC∥RuCoOx@NC membrane-free overall hydrazine splitting electrolyzer only required ultralow cell voltages of 0.063 and 0.505 V to produce 10 and 100 mA cm−2, with remarkable long-term stability, demonstrating its exceptional bifunctional activity. Ex situ Raman spectroscopy results indicate that both Co3O4 and RuO2 species contribute to the electrocatalytic activity of the RuCoOx@NC composite. This work suggests a potential strategy for developing bifunctional electrocatalytic materials for energy-saving hydrogen production to solve future energy demands.
科研通智能强力驱动
Strongly Powered by AbleSci AI