脑电图
神经影像学
创伤性脑损伤
背景(考古学)
定量脑电图
梅德林
神经功能成像
医学
大脑活动与冥想
心理学
神经科学
精神科
临床心理学
古生物学
政治学
法学
生物
作者
Francesco Amico,J. Lucas Koberda
标识
DOI:10.1177/15500594231202265
摘要
Background. Persons with a history of traumatic brain injury (TBI) may exhibit short- and long-term cognitive deficits as well as psychiatric symptoms. These symptoms often reflect functional anomalies in the brain that are not detected by standard neuroimaging. In this context, quantitative electroencephalography (qEEG) is more suitable to evaluate non-normative activity in a wide range of clinical settings. Method. We searched the literature using the “Medline” and “Web of Science” online databases. The search was concluded on February 23, 2023, and revised on July 12, 2023. It returned 134 results from Medline and 4 from Web of Science. We then applied the PRISMA method, which led to the selection of 31 articles, the most recent one published in March 2023. Results. The qEEG method can detect functional anomalies in the brain occurring immediately after and even years after injury, revealing in most cases abnormal power variability and increases in slow (delta and theta) versus decreases in fast (alpha, beta, and gamma) frequency activity. Moreover, other findings show that reduced beta coherence between frontoparietal regions is associated with slower processing speed in patients with recent mild TBI (mTBI). More recently, machine learning (ML) research has developed highly reliable models and algorithms for the detection of TBI, some of which are already integrated into commercial qEEG equipment. Conclusion. Accumulating evidence indicates that the qEEG method may improve the diagnosis and management of TBI, in many cases revealing long-term functional anomalies in the brain or even neuroanatomical insults that are not revealed by standard neuroimaging. While FDA clearance has been obtained only for some of the commercially available equipment, the qEEG method allows for systematic, cost-effective, non-invasive, and reliable investigations at emergency departments. Importantly, the automated implementation of intelligent algorithms based on multimodally acquired, clinically relevant measures may play a key role in increasing diagnosis reliability.
科研通智能强力驱动
Strongly Powered by AbleSci AI