Attention-based deformable convolutional network for Chinese various dynasties character recognition

计算机科学 汉字 构造(python库) 性格(数学) 人工智能 卷积(计算机科学) 任务(项目管理) MNIST数据库 卷积神经网络 深度学习 机制(生物学) 字符识别 模式识别(心理学) 自然语言处理 人工神经网络 数学 图像(数学) 哲学 几何学 管理 认识论 经济 程序设计语言
作者
Sheng Zhuo,Jiangshe Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121881-121881 被引量:12
标识
DOI:10.1016/j.eswa.2023.121881
摘要

In this paper, we propose a new deformable convolutional network with attention mechanism to deal with the Chinese character of various dynasties. These ancient Chinese characters are hieroglyph with special spatial structure and gradually evolving into modern Chinese characters. However, because of the intrinsic limitations of traditional convolutional networks in the model, the geometric structure of the convolutional module is fixed. Therefore, we build a new architecture called attention-based deformable networks for this task. Besides, we construct a new dataset called the Chinese characters from Various Dynasties Dataset (CCDD), which includes the evolution of Chinese characters between major dynasties. Deformable convolution based on attention mechanism can obtain those more important offsets, resulting in better performance than the original deformable convolution. In the experimental stage, extensive experiments validate the performance of our approach. Firstly, the effectiveness of this network was verified on two text datasets, Mnist(99.38%) and notMnist(98.22%) both comparing with several modules. Finally, the best performance was achieved on the CCDD dataset(91.50%) compared to other classical deep learning networks. This is the first paper to apply deep learning methods to recognize and classify the characters of major dynasties in China. And archaeological workers need to be able to recognize Chinese characters from various periods in China, and our algorithm can assist them in completing this task to a certain extent. It can also help cultural relic enthusiasts roughly determine the age of cultural relics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc发布了新的文献求助10
刚刚
1秒前
2秒前
行不通完成签到,获得积分10
2秒前
Lny应助屋昂王采纳,获得10
2秒前
Leah关注了科研通微信公众号
2秒前
浆糊完成签到 ,获得积分10
3秒前
4秒前
迅速哈密瓜完成签到,获得积分10
5秒前
5秒前
嗑盐式完成签到,获得积分10
5秒前
6秒前
6秒前
在水一方应助zhiyuan采纳,获得10
6秒前
9秒前
11秒前
周济发布了新的文献求助10
12秒前
13秒前
嗑盐式发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
15秒前
浮游应助程程采纳,获得10
18秒前
18秒前
18秒前
GXH发布了新的文献求助10
18秒前
18秒前
19秒前
zjh发布了新的文献求助10
19秒前
阿桔完成签到 ,获得积分10
19秒前
北风歌发布了新的文献求助10
20秒前
Yuan完成签到 ,获得积分10
22秒前
22秒前
23秒前
23秒前
23秒前
24秒前
AnjeXi完成签到 ,获得积分10
25秒前
xaaowang发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4536101
求助须知:如何正确求助?哪些是违规求助? 3971559
关于积分的说明 12304409
捐赠科研通 3638366
什么是DOI,文献DOI怎么找? 2003117
邀请新用户注册赠送积分活动 1038682
科研通“疑难数据库(出版商)”最低求助积分说明 928079