Attention-based deformable convolutional network for Chinese various dynasties character recognition

计算机科学 汉字 构造(python库) 性格(数学) 人工智能 卷积(计算机科学) 任务(项目管理) MNIST数据库 卷积神经网络 深度学习 机制(生物学) 字符识别 模式识别(心理学) 自然语言处理 人工神经网络 数学 图像(数学) 经济 管理 几何学 程序设计语言 哲学 认识论
作者
Sheng Zhuo,Jiangshe Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121881-121881
标识
DOI:10.1016/j.eswa.2023.121881
摘要

In this paper, we propose a new deformable convolutional network with attention mechanism to deal with the Chinese character of various dynasties. These ancient Chinese characters are hieroglyph with special spatial structure and gradually evolving into modern Chinese characters. However, because of the intrinsic limitations of traditional convolutional networks in the model, the geometric structure of the convolutional module is fixed. Therefore, we build a new architecture called attention-based deformable networks for this task. Besides, we construct a new dataset called the Chinese characters from Various Dynasties Dataset (CCDD), which includes the evolution of Chinese characters between major dynasties. Deformable convolution based on attention mechanism can obtain those more important offsets, resulting in better performance than the original deformable convolution. In the experimental stage, extensive experiments validate the performance of our approach. Firstly, the effectiveness of this network was verified on two text datasets, Mnist(99.38%) and notMnist(98.22%) both comparing with several modules. Finally, the best performance was achieved on the CCDD dataset(91.50%) compared to other classical deep learning networks. This is the first paper to apply deep learning methods to recognize and classify the characters of major dynasties in China. And archaeological workers need to be able to recognize Chinese characters from various periods in China, and our algorithm can assist them in completing this task to a certain extent. It can also help cultural relic enthusiasts roughly determine the age of cultural relics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助噜噜采纳,获得10
刚刚
胡一把发布了新的文献求助10
1秒前
2秒前
2秒前
读研123完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
余方昆发布了新的文献求助10
7秒前
盖世完成签到,获得积分10
7秒前
7秒前
8秒前
SYLH应助Chen采纳,获得10
10秒前
Akim应助安静的手链采纳,获得10
10秒前
lzp发布了新的文献求助10
11秒前
12秒前
flow完成签到,获得积分10
12秒前
见一发布了新的文献求助10
12秒前
Yewen完成签到,获得积分10
13秒前
14秒前
噜噜发布了新的文献求助10
16秒前
传统的松鼠完成签到 ,获得积分10
17秒前
科研通AI2S应助盖世采纳,获得30
18秒前
19秒前
pdskfc发布了新的文献求助10
19秒前
19秒前
19秒前
完美世界应助lzp采纳,获得10
20秒前
英姑应助媛宝&硕宝采纳,获得10
21秒前
lbx发布了新的文献求助10
21秒前
小王同学完成签到,获得积分20
21秒前
23秒前
23秒前
23秒前
LHF发布了新的文献求助10
25秒前
pcr163应助srics采纳,获得50
25秒前
25秒前
盖世发布了新的文献求助30
26秒前
亓昶发布了新的文献求助10
27秒前
27秒前
29秒前
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193