Identifying the authenticity and geographical origin of rice by analyzing hyperspectral images using unsupervised clustering algorithms

聚类分析 高光谱成像 主成分分析 模式识别(心理学) 人工智能 计算机科学 无监督学习 乘法函数 k均值聚类 面子(社会学概念) 数据挖掘 数学 数学分析 社会科学 社会学
作者
Mahsa Edris,Mahdi Ghasemi‐Varnamkhasti,Sajad Kiani,Hassan Yazdanpanah,Zahra Izadi
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:125: 105737-105737 被引量:3
标识
DOI:10.1016/j.jfca.2023.105737
摘要

The present study evaluated the capability of the hyperspectral imaging system (HSI) as a rapid and non-destructive technique to identify the authenticity and origin of three Iranian rice varieties (Shiroudi, Khazar, and Hashemi) from three main origins. Captured raw spectral data were pre-processed using de-trending (DT), multiplicative scatter correction (MSC), and standard normal variant (SNV), and then were fed to principal component analysis (PCA) for the visual discrimination of the samples and data reduction. Next, since in real applications, the system might face unknown rice samples with unknown patterns, three unsupervised algorithms, self-organizing map (SOM), automatic clustering by artificial bee colony (ABC), and k-means algorithms were applied for clustering the samples in their original group. Results illustrated that SOM and k-means clustering algorithms led to the reliable grouping of the rice varieties. The models indicated that the high-yielding rice (Shiroudi and Hashemi) from two different origins with similar weather conditions were distinguished close to each other and completely separated from the third variety (Khazar). However, the automatic clustering method separated the varieties with less accuracy than the other two methods. Finally, the HSI system coupled with unsupervised algorithms provided satisfactory results and could be used as a reliable, out-lab, and fast method for ‎authenticating rice‎ varieties from different geographical origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研猪完成签到,获得积分10
刚刚
大个应助qqwxp采纳,获得10
刚刚
jennifercui完成签到,获得积分10
刚刚
SXM完成签到,获得积分10
刚刚
酷酷的起眸完成签到,获得积分10
1秒前
细腻沅完成签到,获得积分10
1秒前
LILING完成签到,获得积分10
1秒前
123发布了新的文献求助10
2秒前
赖床艺术家完成签到,获得积分10
3秒前
领导范儿应助通~采纳,获得10
4秒前
端庄的黑米完成签到,获得积分10
4秒前
4秒前
领导范儿应助坤坤采纳,获得10
4秒前
5秒前
神勇的雅香应助司徒迎曼采纳,获得10
5秒前
5秒前
bkagyin应助椰子采纳,获得10
5秒前
Owen应助舒服的茹嫣采纳,获得10
5秒前
呼吸之野应助按住心动采纳,获得20
6秒前
6秒前
身为风帆发布了新的文献求助10
6秒前
changjiaren完成签到,获得积分10
6秒前
风中的怜阳完成签到,获得积分10
7秒前
自信号厂完成签到 ,获得积分10
7秒前
小蘑菇应助ccc采纳,获得10
8秒前
shuo完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
aich完成签到,获得积分10
9秒前
上官若男应助YE采纳,获得10
10秒前
Jasper应助YaoX采纳,获得10
10秒前
天天快乐应助威武绿真采纳,获得10
10秒前
MADKAI发布了新的文献求助10
10秒前
11秒前
慕青应助April采纳,获得10
11秒前
123完成签到,获得积分10
11秒前
Xu发布了新的文献求助10
11秒前
manan发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740