Identifying the authenticity and geographical origin of rice by analyzing hyperspectral images using unsupervised clustering algorithms

聚类分析 高光谱成像 主成分分析 模式识别(心理学) 人工智能 计算机科学 无监督学习 乘法函数 k均值聚类 面子(社会学概念) 数据挖掘 数学 社会科学 数学分析 社会学
作者
Mahsa Edris,Mahdi Ghasemi‐Varnamkhasti,Sajad Kiani,Hassan Yazdanpanah,Zahra Izadi
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:125: 105737-105737 被引量:3
标识
DOI:10.1016/j.jfca.2023.105737
摘要

The present study evaluated the capability of the hyperspectral imaging system (HSI) as a rapid and non-destructive technique to identify the authenticity and origin of three Iranian rice varieties (Shiroudi, Khazar, and Hashemi) from three main origins. Captured raw spectral data were pre-processed using de-trending (DT), multiplicative scatter correction (MSC), and standard normal variant (SNV), and then were fed to principal component analysis (PCA) for the visual discrimination of the samples and data reduction. Next, since in real applications, the system might face unknown rice samples with unknown patterns, three unsupervised algorithms, self-organizing map (SOM), automatic clustering by artificial bee colony (ABC), and k-means algorithms were applied for clustering the samples in their original group. Results illustrated that SOM and k-means clustering algorithms led to the reliable grouping of the rice varieties. The models indicated that the high-yielding rice (Shiroudi and Hashemi) from two different origins with similar weather conditions were distinguished close to each other and completely separated from the third variety (Khazar). However, the automatic clustering method separated the varieties with less accuracy than the other two methods. Finally, the HSI system coupled with unsupervised algorithms provided satisfactory results and could be used as a reliable, out-lab, and fast method for ‎authenticating rice‎ varieties from different geographical origins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caster1发布了新的文献求助10
4秒前
今后应助大意的天亦采纳,获得10
4秒前
浮荒完成签到,获得积分20
5秒前
8秒前
黑闷蛋完成签到,获得积分10
8秒前
熠旅完成签到,获得积分10
9秒前
10秒前
马霄鑫完成签到,获得积分10
11秒前
11秒前
11秒前
赘婿应助veblem采纳,获得10
11秒前
优雅的白安完成签到,获得积分10
12秒前
12秒前
14秒前
自觉从筠完成签到 ,获得积分10
14秒前
马霄鑫发布了新的文献求助10
15秒前
wwwjy完成签到 ,获得积分10
15秒前
15秒前
ceeray23发布了新的文献求助20
16秒前
咸鱼发布了新的文献求助10
16秒前
16秒前
Ride发布了新的文献求助10
16秒前
17秒前
17秒前
林林发布了新的文献求助10
18秒前
18秒前
慕青应助Tree_采纳,获得10
19秒前
19秒前
研六六发布了新的文献求助10
20秒前
姜姜完成签到 ,获得积分10
20秒前
科研通AI2S应助Ride采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
所所应助你还未看此花时采纳,获得10
21秒前
哈哈发布了新的文献求助10
22秒前
22秒前
观澜发布了新的文献求助10
24秒前
情怀应助old幽露露采纳,获得10
24秒前
24秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599456
求助须知:如何正确求助?哪些是违规求助? 4685036
关于积分的说明 14837601
捐赠科研通 4668162
什么是DOI,文献DOI怎么找? 2537964
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783