Identifying the authenticity and geographical origin of rice by analyzing hyperspectral images using unsupervised clustering algorithms

聚类分析 高光谱成像 主成分分析 模式识别(心理学) 人工智能 计算机科学 无监督学习 乘法函数 k均值聚类 面子(社会学概念) 数据挖掘 数学 社会科学 数学分析 社会学
作者
Mahsa Edris,Mahdi Ghasemi‐Varnamkhasti,Sajad Kiani,Hassan Yazdanpanah,Zahra Izadi
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:125: 105737-105737 被引量:3
标识
DOI:10.1016/j.jfca.2023.105737
摘要

The present study evaluated the capability of the hyperspectral imaging system (HSI) as a rapid and non-destructive technique to identify the authenticity and origin of three Iranian rice varieties (Shiroudi, Khazar, and Hashemi) from three main origins. Captured raw spectral data were pre-processed using de-trending (DT), multiplicative scatter correction (MSC), and standard normal variant (SNV), and then were fed to principal component analysis (PCA) for the visual discrimination of the samples and data reduction. Next, since in real applications, the system might face unknown rice samples with unknown patterns, three unsupervised algorithms, self-organizing map (SOM), automatic clustering by artificial bee colony (ABC), and k-means algorithms were applied for clustering the samples in their original group. Results illustrated that SOM and k-means clustering algorithms led to the reliable grouping of the rice varieties. The models indicated that the high-yielding rice (Shiroudi and Hashemi) from two different origins with similar weather conditions were distinguished close to each other and completely separated from the third variety (Khazar). However, the automatic clustering method separated the varieties with less accuracy than the other two methods. Finally, the HSI system coupled with unsupervised algorithms provided satisfactory results and could be used as a reliable, out-lab, and fast method for ‎authenticating rice‎ varieties from different geographical origins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt完成签到,获得积分10
刚刚
Yuanyuan发布了新的文献求助10
刚刚
杨怡红发布了新的文献求助10
1秒前
shuliu完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
大个应助Stellan采纳,获得10
2秒前
Criminology34应助落后成仁采纳,获得10
2秒前
zxcvbnm完成签到 ,获得积分10
2秒前
longer发布了新的文献求助10
2秒前
约离发布了新的文献求助10
2秒前
微笑傥完成签到,获得积分10
2秒前
CipherSage应助仁爱嫣采纳,获得10
3秒前
慕青应助绝世冰淇淋采纳,获得10
3秒前
买三个包子吧完成签到,获得积分10
4秒前
zhw发布了新的文献求助10
4秒前
yolo完成签到,获得积分10
4秒前
5秒前
结实青丝发布了新的文献求助10
6秒前
Jasper应助曾经问雁采纳,获得10
6秒前
徐志豪发布了新的文献求助10
7秒前
汉堡包应助大豆子采纳,获得10
7秒前
7秒前
咵嚓发布了新的文献求助10
7秒前
Sword完成签到,获得积分10
8秒前
熊猫发布了新的文献求助10
8秒前
研友_VZG7GZ应助黄河鲤鱼儿采纳,获得10
8秒前
芷兰丁香发布了新的文献求助50
9秒前
9秒前
10秒前
动听的青曼完成签到,获得积分10
11秒前
814791097完成签到,获得积分10
11秒前
11秒前
英姑应助追寻的书竹采纳,获得10
11秒前
科研小白关注了科研通微信公众号
12秒前
享文完成签到,获得积分10
12秒前
12秒前
sssss完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172