Identifying the authenticity and geographical origin of rice by analyzing hyperspectral images using unsupervised clustering algorithms

聚类分析 高光谱成像 主成分分析 模式识别(心理学) 人工智能 计算机科学 无监督学习 乘法函数 k均值聚类 面子(社会学概念) 数据挖掘 数学 社会科学 数学分析 社会学
作者
Mahsa Edris,Mahdi Ghasemi‐Varnamkhasti,Sajad Kiani,Hassan Yazdanpanah,Zahra Izadi
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:125: 105737-105737 被引量:3
标识
DOI:10.1016/j.jfca.2023.105737
摘要

The present study evaluated the capability of the hyperspectral imaging system (HSI) as a rapid and non-destructive technique to identify the authenticity and origin of three Iranian rice varieties (Shiroudi, Khazar, and Hashemi) from three main origins. Captured raw spectral data were pre-processed using de-trending (DT), multiplicative scatter correction (MSC), and standard normal variant (SNV), and then were fed to principal component analysis (PCA) for the visual discrimination of the samples and data reduction. Next, since in real applications, the system might face unknown rice samples with unknown patterns, three unsupervised algorithms, self-organizing map (SOM), automatic clustering by artificial bee colony (ABC), and k-means algorithms were applied for clustering the samples in their original group. Results illustrated that SOM and k-means clustering algorithms led to the reliable grouping of the rice varieties. The models indicated that the high-yielding rice (Shiroudi and Hashemi) from two different origins with similar weather conditions were distinguished close to each other and completely separated from the third variety (Khazar). However, the automatic clustering method separated the varieties with less accuracy than the other two methods. Finally, the HSI system coupled with unsupervised algorithms provided satisfactory results and could be used as a reliable, out-lab, and fast method for ‎authenticating rice‎ varieties from different geographical origins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
17263365721完成签到 ,获得积分10
1秒前
冬天的回忆完成签到 ,获得积分10
1秒前
风清扬应助科研通管家采纳,获得30
2秒前
李健应助科研通管家采纳,获得10
2秒前
dangdang应助科研通管家采纳,获得40
2秒前
2秒前
Frank应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
3秒前
Frank应助科研通管家采纳,获得10
3秒前
3秒前
烟花应助科研通管家采纳,获得10
3秒前
泽松应助科研通管家采纳,获得10
3秒前
3秒前
大个应助科研通管家采纳,获得50
3秒前
量子星尘发布了新的文献求助10
3秒前
小二郎应助Narcissus采纳,获得10
3秒前
寒冷的小熊猫完成签到,获得积分10
4秒前
5秒前
华仔应助苗苗会喵喵采纳,获得10
6秒前
8秒前
wayne完成签到,获得积分10
10秒前
zcydbttj2011完成签到 ,获得积分10
14秒前
limo完成签到 ,获得积分10
14秒前
ying完成签到,获得积分10
16秒前
析木完成签到,获得积分10
16秒前
17秒前
olivia完成签到,获得积分10
18秒前
无止完成签到,获得积分10
19秒前
千里毅完成签到,获得积分10
19秒前
科研通AI6应助keyan采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060