Identifying the authenticity and geographical origin of rice by analyzing hyperspectral images using unsupervised clustering algorithms

聚类分析 高光谱成像 主成分分析 模式识别(心理学) 人工智能 计算机科学 无监督学习 乘法函数 k均值聚类 面子(社会学概念) 数据挖掘 数学 社会科学 数学分析 社会学
作者
Mahsa Edris,Mahdi Ghasemi‐Varnamkhasti,Sajad Kiani,Hassan Yazdanpanah,Zahra Izadi
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:125: 105737-105737 被引量:3
标识
DOI:10.1016/j.jfca.2023.105737
摘要

The present study evaluated the capability of the hyperspectral imaging system (HSI) as a rapid and non-destructive technique to identify the authenticity and origin of three Iranian rice varieties (Shiroudi, Khazar, and Hashemi) from three main origins. Captured raw spectral data were pre-processed using de-trending (DT), multiplicative scatter correction (MSC), and standard normal variant (SNV), and then were fed to principal component analysis (PCA) for the visual discrimination of the samples and data reduction. Next, since in real applications, the system might face unknown rice samples with unknown patterns, three unsupervised algorithms, self-organizing map (SOM), automatic clustering by artificial bee colony (ABC), and k-means algorithms were applied for clustering the samples in their original group. Results illustrated that SOM and k-means clustering algorithms led to the reliable grouping of the rice varieties. The models indicated that the high-yielding rice (Shiroudi and Hashemi) from two different origins with similar weather conditions were distinguished close to each other and completely separated from the third variety (Khazar). However, the automatic clustering method separated the varieties with less accuracy than the other two methods. Finally, the HSI system coupled with unsupervised algorithms provided satisfactory results and could be used as a reliable, out-lab, and fast method for ‎authenticating rice‎ varieties from different geographical origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助FLZLC采纳,获得10
1秒前
淡墨完成签到,获得积分10
1秒前
1111应助大可采纳,获得10
2秒前
所所应助痕迹采纳,获得10
2秒前
yyxx完成签到,获得积分10
2秒前
3秒前
端庄的蜡烛完成签到,获得积分20
3秒前
3秒前
3秒前
xxx完成签到,获得积分10
3秒前
YYQ发布了新的文献求助30
3秒前
大尾猫发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
帅气的猫发布了新的文献求助10
5秒前
fffffffq发布了新的文献求助10
5秒前
5秒前
6秒前
lsc发布了新的文献求助10
6秒前
6秒前
善良的冷梅完成签到,获得积分10
7秒前
还有糕手发布了新的文献求助10
7秒前
倩倩发布了新的文献求助10
7秒前
现代的寻芹完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
陈小青完成签到 ,获得积分10
8秒前
8秒前
Ava应助想要多点头发采纳,获得10
9秒前
litingtingting完成签到,获得积分10
10秒前
CharlotteBlue应助Ww采纳,获得30
10秒前
搜集达人应助端庄的蜡烛采纳,获得10
10秒前
武原龙发布了新的文献求助10
11秒前
泓泽发布了新的文献求助10
11秒前
ED应助粉鼻子采纳,获得10
11秒前
狂野芷蕾发布了新的文献求助10
12秒前
Menloar完成签到,获得积分10
12秒前
13秒前
英俊的铭应助wind采纳,获得10
13秒前
鳗鱼画笔应助晓湫采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288