Identifying the authenticity and geographical origin of rice by analyzing hyperspectral images using unsupervised clustering algorithms

聚类分析 高光谱成像 主成分分析 模式识别(心理学) 人工智能 计算机科学 无监督学习 乘法函数 k均值聚类 面子(社会学概念) 数据挖掘 数学 社会科学 数学分析 社会学
作者
Mahsa Edris,Mahdi Ghasemi‐Varnamkhasti,Sajad Kiani,Hassan Yazdanpanah,Zahra Izadi
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:125: 105737-105737 被引量:3
标识
DOI:10.1016/j.jfca.2023.105737
摘要

The present study evaluated the capability of the hyperspectral imaging system (HSI) as a rapid and non-destructive technique to identify the authenticity and origin of three Iranian rice varieties (Shiroudi, Khazar, and Hashemi) from three main origins. Captured raw spectral data were pre-processed using de-trending (DT), multiplicative scatter correction (MSC), and standard normal variant (SNV), and then were fed to principal component analysis (PCA) for the visual discrimination of the samples and data reduction. Next, since in real applications, the system might face unknown rice samples with unknown patterns, three unsupervised algorithms, self-organizing map (SOM), automatic clustering by artificial bee colony (ABC), and k-means algorithms were applied for clustering the samples in their original group. Results illustrated that SOM and k-means clustering algorithms led to the reliable grouping of the rice varieties. The models indicated that the high-yielding rice (Shiroudi and Hashemi) from two different origins with similar weather conditions were distinguished close to each other and completely separated from the third variety (Khazar). However, the automatic clustering method separated the varieties with less accuracy than the other two methods. Finally, the HSI system coupled with unsupervised algorithms provided satisfactory results and could be used as a reliable, out-lab, and fast method for ‎authenticating rice‎ varieties from different geographical origins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助成就的钢笔采纳,获得30
刚刚
NN发布了新的文献求助10
1秒前
3秒前
5秒前
万能图书馆应助喵喵不二采纳,获得10
5秒前
lome发布了新的文献求助10
6秒前
gllc发布了新的文献求助10
6秒前
7秒前
狂野夜绿发布了新的文献求助10
8秒前
8秒前
Oreo完成签到,获得积分10
9秒前
keal完成签到,获得积分10
11秒前
Groot发布了新的文献求助10
13秒前
topteng完成签到,获得积分20
13秒前
15秒前
simon发布了新的文献求助10
15秒前
16秒前
希望天下0贩的0应助NN采纳,获得10
17秒前
白白白戊发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
20秒前
李健应助吃鱼的猫采纳,获得10
21秒前
Orange应助am采纳,获得10
21秒前
量子星尘发布了新的文献求助30
21秒前
22秒前
奔赴发布了新的文献求助10
22秒前
23秒前
咻咻发布了新的文献求助10
23秒前
JokerSun完成签到,获得积分10
24秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
wxx完成签到,获得积分10
26秒前
莫默完成签到,获得积分10
27秒前
喵喵不二发布了新的文献求助10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799295
求助须知:如何正确求助?哪些是违规求助? 5798781
关于积分的说明 15499670
捐赠科研通 4925751
什么是DOI,文献DOI怎么找? 2651626
邀请新用户注册赠送积分活动 1598681
关于科研通互助平台的介绍 1553565