Identifying the authenticity and geographical origin of rice by analyzing hyperspectral images using unsupervised clustering algorithms

聚类分析 高光谱成像 主成分分析 模式识别(心理学) 人工智能 计算机科学 无监督学习 乘法函数 k均值聚类 面子(社会学概念) 数据挖掘 数学 社会科学 数学分析 社会学
作者
Mahsa Edris,Mahdi Ghasemi‐Varnamkhasti,Sajad Kiani,Hassan Yazdanpanah,Zahra Izadi
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:125: 105737-105737 被引量:3
标识
DOI:10.1016/j.jfca.2023.105737
摘要

The present study evaluated the capability of the hyperspectral imaging system (HSI) as a rapid and non-destructive technique to identify the authenticity and origin of three Iranian rice varieties (Shiroudi, Khazar, and Hashemi) from three main origins. Captured raw spectral data were pre-processed using de-trending (DT), multiplicative scatter correction (MSC), and standard normal variant (SNV), and then were fed to principal component analysis (PCA) for the visual discrimination of the samples and data reduction. Next, since in real applications, the system might face unknown rice samples with unknown patterns, three unsupervised algorithms, self-organizing map (SOM), automatic clustering by artificial bee colony (ABC), and k-means algorithms were applied for clustering the samples in their original group. Results illustrated that SOM and k-means clustering algorithms led to the reliable grouping of the rice varieties. The models indicated that the high-yielding rice (Shiroudi and Hashemi) from two different origins with similar weather conditions were distinguished close to each other and completely separated from the third variety (Khazar). However, the automatic clustering method separated the varieties with less accuracy than the other two methods. Finally, the HSI system coupled with unsupervised algorithms provided satisfactory results and could be used as a reliable, out-lab, and fast method for ‎authenticating rice‎ varieties from different geographical origins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiekunwhy完成签到,获得积分10
刚刚
苗条怀亦完成签到,获得积分10
1秒前
huangjing完成签到,获得积分10
1秒前
阿吟发布了新的文献求助10
1秒前
共享精神应助辛勤秋双采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
yohana完成签到 ,获得积分10
2秒前
小林完成签到 ,获得积分10
2秒前
炙热的子默完成签到,获得积分10
2秒前
2秒前
heaven完成签到,获得积分10
3秒前
流云完成签到,获得积分10
3秒前
JJJ完成签到,获得积分0
3秒前
酷波er应助瘦瘦的雪巧采纳,获得10
3秒前
3秒前
在水一方应助DraGon采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
小蘑菇应助小星采纳,获得10
4秒前
4秒前
肥肥完成签到,获得积分10
4秒前
无限亦寒完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
不倦应助haoyooo采纳,获得10
6秒前
6秒前
思源应助tutu采纳,获得10
7秒前
苗条怀亦发布了新的文献求助10
7秒前
dew应助baomingqiu采纳,获得10
7秒前
南北3199完成签到,获得积分10
7秒前
Min发布了新的文献求助10
8秒前
润xue完成签到,获得积分10
8秒前
龙大王完成签到 ,获得积分10
8秒前
辛勤月饼发布了新的文献求助20
9秒前
9秒前
9秒前
10秒前
打工人发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665433
求助须知:如何正确求助?哪些是违规求助? 4876596
关于积分的说明 15113729
捐赠科研通 4824584
什么是DOI,文献DOI怎么找? 2582801
邀请新用户注册赠送积分活动 1536780
关于科研通互助平台的介绍 1495335