Cross-modal incongruity aligning and collaborating for multi-modal sarcasm detection

讽刺 计算机科学 保险丝(电气) 模态(人机交互) 人工智能 模式 情态动词 自编码 过程(计算) 自然语言处理 图像融合 机器学习 图像(数学) 深度学习 语言学 工程类 讽刺 社会科学 哲学 化学 电气工程 社会学 高分子化学 程序设计语言 操作系统
作者
Jie Wang,Yan Yang,Yongquan Jiang,Minbo Ma,Zhuyang Xie,Tianrui Li
出处
期刊:Information Fusion [Elsevier]
卷期号:103: 102132-102132 被引量:11
标识
DOI:10.1016/j.inffus.2023.102132
摘要

Sarcasm embodies a linguistic phenomenon that highlights a significant incongruity between the literal meanings of words and intended attitudes. With the proliferation of image–text content on social media, the task of multi-modal sarcasm detection (MSD) has gained considerable attention recently. Tremendous progress have been made in developing better MSD models, primarily relying on a straightforward extract-then-fuse paradigm. However, such a setting encounters two potential challenges. First, the utilization of separately pre-trained unimodal models for extracting visual and textual features frequently lacks the fundamental alignment capabilities required for effective multimodal data integration. Second, the detrimental modality gaps between vision and language make it challenging to comprehensively integrate multi-modal information solely via diverse cross-modal fusion techniques. Consequently, this poses a prominent challenge in further capturing cross-modal incongruity and improving the effectiveness of MSD. In this paper, we propose a Multi-modal Mutual Learning (MuMu) network to tackle these issues. Specifically, we initialize the MuMu network with image and text encoders from the large-scale Contrastive Language-Image Pretraining model to enhance the underlying image–text correspondence. Moreover, to improve the capability of capturing cross-modal inconsistency during the fusion process, we design an align-fuse-collaborate mechanism to align disparate modalities before fusion and enhance the collaborative modeling ability between the two modalities with mutual learning after fusion. The proposed MuMu achieves new state-of-the-art results on a public dataset, demonstrating a substantial improvement of approximately 3% to 9% in terms of accuracy, micro-F1, and macro-F1 scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
CD发布了新的文献求助10
4秒前
华仔应助芝士猕猴桃采纳,获得10
7秒前
7秒前
7秒前
汉堡包应助zzz采纳,获得10
11秒前
Arthur发布了新的文献求助200
11秒前
超级小刺猬完成签到 ,获得积分10
11秒前
CD完成签到,获得积分10
13秒前
科目三应助言叶采纳,获得10
14秒前
14秒前
15秒前
小马甲应助胡强采纳,获得10
18秒前
风趣契发布了新的文献求助10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得30
18秒前
不配.应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
18秒前
wuji发布了新的文献求助10
18秒前
19秒前
19秒前
XYF完成签到 ,获得积分10
20秒前
Crane完成签到,获得积分10
21秒前
22秒前
怡然奄应助zby2采纳,获得20
24秒前
鱼块完成签到 ,获得积分10
24秒前
言叶发布了新的文献求助10
26秒前
橘子发布了新的文献求助10
26秒前
30秒前
31秒前
阮人雄完成签到,获得积分10
31秒前
科研通AI2S应助任梓宁采纳,获得10
32秒前
33秒前
33秒前
高分求助中
Востребованный временем 2500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391584
求助须知:如何正确求助?哪些是违规求助? 3002659
关于积分的说明 8804925
捐赠科研通 2689266
什么是DOI,文献DOI怎么找? 1473018
科研通“疑难数据库(出版商)”最低求助积分说明 681311
邀请新用户注册赠送积分活动 674200