Cross-modal incongruity aligning and collaborating for multi-modal sarcasm detection

讽刺 计算机科学 保险丝(电气) 模态(人机交互) 人工智能 模式 情态动词 自编码 过程(计算) 自然语言处理 图像融合 机器学习 图像(数学) 深度学习 语言学 工程类 社会科学 讽刺 程序设计语言 高分子化学 化学 社会学 哲学 电气工程 操作系统
作者
Jie Wang,Yan Yang,Yongquan Jiang,Minbo Ma,Zhuyang Xie,Tianrui Li
出处
期刊:Information Fusion [Elsevier]
卷期号:103: 102132-102132 被引量:21
标识
DOI:10.1016/j.inffus.2023.102132
摘要

Sarcasm embodies a linguistic phenomenon that highlights a significant incongruity between the literal meanings of words and intended attitudes. With the proliferation of image–text content on social media, the task of multi-modal sarcasm detection (MSD) has gained considerable attention recently. Tremendous progress have been made in developing better MSD models, primarily relying on a straightforward extract-then-fuse paradigm. However, such a setting encounters two potential challenges. First, the utilization of separately pre-trained unimodal models for extracting visual and textual features frequently lacks the fundamental alignment capabilities required for effective multimodal data integration. Second, the detrimental modality gaps between vision and language make it challenging to comprehensively integrate multi-modal information solely via diverse cross-modal fusion techniques. Consequently, this poses a prominent challenge in further capturing cross-modal incongruity and improving the effectiveness of MSD. In this paper, we propose a Multi-modal Mutual Learning (MuMu) network to tackle these issues. Specifically, we initialize the MuMu network with image and text encoders from the large-scale Contrastive Language-Image Pretraining model to enhance the underlying image–text correspondence. Moreover, to improve the capability of capturing cross-modal inconsistency during the fusion process, we design an align-fuse-collaborate mechanism to align disparate modalities before fusion and enhance the collaborative modeling ability between the two modalities with mutual learning after fusion. The proposed MuMu achieves new state-of-the-art results on a public dataset, demonstrating a substantial improvement of approximately 3% to 9% in terms of accuracy, micro-F1, and macro-F1 scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
starr完成签到,获得积分20
1秒前
情怀应助Jackking采纳,获得10
1秒前
kkk完成签到,获得积分10
1秒前
南北发布了新的文献求助10
1秒前
科研小满发布了新的文献求助10
2秒前
慕青应助daqisong采纳,获得10
2秒前
swan完成签到 ,获得积分20
2秒前
2秒前
绮罗完成签到 ,获得积分10
2秒前
Mic应助野性的曼香采纳,获得10
3秒前
samurai完成签到,获得积分10
3秒前
3秒前
丘比特应助dbq采纳,获得10
3秒前
ding应助dbq采纳,获得10
3秒前
3秒前
槑槑完成签到,获得积分10
3秒前
3秒前
Mlwwq发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
MathCheck发布了新的文献求助10
4秒前
Flipped完成签到,获得积分10
4秒前
温木成林完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
DIAPTERA完成签到,获得积分10
6秒前
脑洞疼应助JamesYang采纳,获得10
7秒前
害羞耷发布了新的文献求助10
7秒前
EasonZ发布了新的文献求助10
7秒前
鸡毛完成签到,获得积分10
8秒前
谢琳发布了新的文献求助10
8秒前
morning发布了新的文献求助10
8秒前
8秒前
weirdo发布了新的文献求助10
8秒前
9秒前
9秒前
陈云完成签到,获得积分10
10秒前
10秒前
cchh完成签到,获得积分20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728114
求助须知:如何正确求助?哪些是违规求助? 5311529
关于积分的说明 15313202
捐赠科研通 4875379
什么是DOI,文献DOI怎么找? 2618794
邀请新用户注册赠送积分活动 1568399
关于科研通互助平台的介绍 1525035