Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar

激光雷达 遥感 天蓬 环境科学 树冠 计算机科学 减少毁林和森林退化造成的排放 由运动产生的结构 卫星图像 图像分辨率 地理 气候变化 人工智能 碳储量 考古 生物 生态学 运动估计
作者
Jamie Tolan,Hung-I Yang,Benjamin Nosarzewski,Guillaume Couairon,Huy V. Vo,John T. Brandt,Justine Spore,Sayantan Majumdar,Daniel Haziza,Janaki Vamaraju,Théo Moutakanni,Piotr Bojanowski,Tracy Johns,Brian White,Tobias Tiecke,Camille Couprie
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:300: 113888-113888 被引量:28
标识
DOI:10.1016/j.rse.2023.113888
摘要

Vegetation structure mapping is critical for understanding the global carbon cycle and monitoring nature-based approaches to climate adaptation and mitigation. Repeated measurements of these data allow for the observation of deforestation or degradation of existing forests, natural forest regeneration, and the implementation of sustainable agricultural practices like agroforestry. Assessments of tree canopy height and crown projected area at a high spatial resolution are also important for monitoring carbon fluxes and assessing tree-based land uses, since forest structures can be highly spatially heterogeneous, especially in agroforestry systems. Very high resolution satellite imagery (less than one meter (1 m) Ground Sample Distance) makes it possible to extract information at the tree level while allowing monitoring at a very large scale. This paper presents the first high-resolution canopy height map concurrently produced for multiple sub-national jurisdictions. Specifically, we produce very high resolution canopy height maps for the states of California and São Paulo, a significant improvement in resolution over the ten meter (10 m) resolution of previous Sentinel / GEDI based worldwide maps of canopy height. The maps are generated by the extraction of features from a self-supervised model trained on Maxar imagery from 2017 to 2020, and the training of a dense prediction decoder against aerial lidar maps. We also introduce a post-processing step using a convolutional network trained on GEDI observations. We evaluate the proposed maps with set-aside validation lidar data as well as by comparing with other remotely sensed maps and field-collected data, and find our model produces an average Mean Absolute Error (MAE) of 2.8 m and Mean Error (ME) of 0.6 m.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝贝发布了新的文献求助10
刚刚
Katie发布了新的文献求助10
刚刚
怡然灵珊完成签到,获得积分10
1秒前
研友_Zl1w68完成签到,获得积分10
1秒前
1秒前
1秒前
李哈哈发布了新的文献求助10
2秒前
Rjj完成签到,获得积分10
3秒前
研友_Raven完成签到,获得积分10
4秒前
陈桉完成签到,获得积分10
4秒前
5秒前
5秒前
橙子发布了新的文献求助50
6秒前
6秒前
科研通AI2S应助ZXT采纳,获得10
7秒前
7秒前
7秒前
GXY完成签到,获得积分10
7秒前
Orange应助贝贝采纳,获得10
8秒前
9秒前
10秒前
RawrRanger完成签到,获得积分10
10秒前
桃花运完成签到,获得积分10
10秒前
科研通AI2S应助侠女采纳,获得10
10秒前
10秒前
诚心冬亦完成签到,获得积分10
11秒前
脑洞疼应助小璐璐呀采纳,获得10
11秒前
沙漏完成签到,获得积分10
11秒前
11秒前
lhcshuang发布了新的文献求助10
11秒前
所所应助美满的芷蕾采纳,获得10
11秒前
Yimi完成签到,获得积分10
11秒前
11秒前
汉堡包应助感动樱采纳,获得10
11秒前
如故完成签到,获得积分10
14秒前
李哈哈完成签到,获得积分10
14秒前
顾矜应助喵喵爱学术采纳,获得10
14秒前
聪慧雪糕发布了新的文献求助10
14秒前
Woyixin完成签到,获得积分10
14秒前
yk完成签到,获得积分10
15秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180559
求助须知:如何正确求助?哪些是违规求助? 2830850
关于积分的说明 7981528
捐赠科研通 2492562
什么是DOI,文献DOI怎么找? 1329653
科研通“疑难数据库(出版商)”最低求助积分说明 635785
版权声明 602954