已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar

激光雷达 遥感 天蓬 环境科学 树冠 计算机科学 减少毁林和森林退化造成的排放 由运动产生的结构 卫星图像 图像分辨率 地理 气候变化 人工智能 碳储量 生态学 考古 运动估计 生物
作者
Jamie Tolan,Hung-I Yang,Benjamin Nosarzewski,Guillaume Couairon,Huy V. Vo,John T. Brandt,Justine Spore,Sayantan Majumdar,Daniel Haziza,Janaki Vamaraju,Théo Moutakanni,Piotr Bojanowski,Tracy Johns,Brian White,Tobias Tiecke,Camille Couprie
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:300: 113888-113888 被引量:28
标识
DOI:10.1016/j.rse.2023.113888
摘要

Vegetation structure mapping is critical for understanding the global carbon cycle and monitoring nature-based approaches to climate adaptation and mitigation. Repeated measurements of these data allow for the observation of deforestation or degradation of existing forests, natural forest regeneration, and the implementation of sustainable agricultural practices like agroforestry. Assessments of tree canopy height and crown projected area at a high spatial resolution are also important for monitoring carbon fluxes and assessing tree-based land uses, since forest structures can be highly spatially heterogeneous, especially in agroforestry systems. Very high resolution satellite imagery (less than one meter (1 m) Ground Sample Distance) makes it possible to extract information at the tree level while allowing monitoring at a very large scale. This paper presents the first high-resolution canopy height map concurrently produced for multiple sub-national jurisdictions. Specifically, we produce very high resolution canopy height maps for the states of California and São Paulo, a significant improvement in resolution over the ten meter (10 m) resolution of previous Sentinel / GEDI based worldwide maps of canopy height. The maps are generated by the extraction of features from a self-supervised model trained on Maxar imagery from 2017 to 2020, and the training of a dense prediction decoder against aerial lidar maps. We also introduce a post-processing step using a convolutional network trained on GEDI observations. We evaluate the proposed maps with set-aside validation lidar data as well as by comparing with other remotely sensed maps and field-collected data, and find our model produces an average Mean Absolute Error (MAE) of 2.8 m and Mean Error (ME) of 0.6 m.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiko发布了新的文献求助10
刚刚
2秒前
Kristine完成签到 ,获得积分10
3秒前
常绝山完成签到 ,获得积分10
4秒前
4秒前
NiuNiu发布了新的文献求助20
5秒前
chen完成签到,获得积分10
6秒前
meow完成签到 ,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
浮游应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
清爽老九应助科研通管家采纳,获得30
9秒前
情怀应助科研通管家采纳,获得10
9秒前
GingerF应助科研通管家采纳,获得50
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
加贝火火完成签到 ,获得积分10
9秒前
9秒前
清爽老九应助科研通管家采纳,获得30
9秒前
9秒前
kiko完成签到,获得积分20
11秒前
张章发布了新的文献求助10
11秒前
牛牛完成签到 ,获得积分10
12秒前
康谨完成签到 ,获得积分10
12秒前
无幻完成签到 ,获得积分10
17秒前
隐形曼青应助xjz采纳,获得10
18秒前
19秒前
20秒前
黑神白了完成签到 ,获得积分10
21秒前
鲜艳的采白应助mark707采纳,获得50
21秒前
团宝妞宝完成签到,获得积分10
23秒前
浮浮世世发布了新的文献求助10
24秒前
隐形曼青应助lf-leo采纳,获得10
25秒前
25秒前
我是老大应助joy采纳,获得10
26秒前
Xiao完成签到 ,获得积分10
27秒前
29秒前
Gzl完成签到 ,获得积分10
29秒前
31秒前
mark707完成签到,获得积分10
31秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136552
求助须知:如何正确求助?哪些是违规求助? 4336682
关于积分的说明 13510228
捐赠科研通 4174745
什么是DOI,文献DOI怎么找? 2289040
邀请新用户注册赠送积分活动 1289739
关于科研通互助平台的介绍 1231058