Anti-leakage and recyclable phase change thermal conductive films with ultralow thermal impedance enabled by Field’s metal via the generation and internalization of metal oxides

材料科学 液态金属 热的 导电体 复合材料 相(物质) 泄漏(经济) 散热膏 相变材料 金属 热导率 热力学 冶金 化学 物理 宏观经济学 有机化学 经济
作者
Yu Zhao,Zhengguo Zhang,Ziye Ling,Xiaoming Fang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:477: 146971-146971
标识
DOI:10.1016/j.cej.2023.146971
摘要

The heat dissipation performance of a thermal interface material (TIM) is greatly dependent on its total thermal impedance, which can be effectively reduced by introducing a solid–liquid phase change material (PCM). However, previously reported phase change TIMs (PCTIMs) have been developed only based on organic PCMs with low thermal conductivities; thus, they cannot achieve low thermal impedance. Herein, Field’s metal (FM), which is a metal phase change material with a melting point of approximately 60 ℃, is first employed to develop a novel PCTIM with an ultralow thermal impedance. Trace oxidation is conducted on FM, and Bi2O3 and SnO are thus generated, followed by forming nanoscale particles by internalization. The formation of the nanoscale metal oxides increases the surface free energy and interfacial interaction force, thereby increasing the viscosity and improving the film-forming ability of the oxidized FM. The phase change thermal conductive films with different thicknesses, which are fabricated from the optimal oxidized FM, exhibit little liquid leakage, even at a pressure of 200 psi, and reach an ultralow thermal impedance of 0.03 cm2·K·W−1 at a thickness of 100 μm after the solid–liquid phase change, which is lower than those of the previously reported PCTIMs. The optimal film possesses good thermal reliability and recyclability, and shows a significantly better cooling effect than a commercial PCTIM with an identical thickness. These ideal characteristics make the FM-based phase change thermal conductive films up-and-coming in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
XIeXIe发布了新的文献求助10
2秒前
xixixi完成签到,获得积分10
2秒前
小管完成签到,获得积分10
3秒前
7秒前
美嘉美完成签到,获得积分10
8秒前
烟花应助Lala采纳,获得30
9秒前
柯柯啦啦发布了新的文献求助10
11秒前
JoaquinH完成签到,获得积分10
11秒前
zhuzhu发布了新的文献求助10
11秒前
xtdexy完成签到,获得积分10
13秒前
CC完成签到,获得积分10
15秒前
16秒前
Bian完成签到,获得积分10
16秒前
莫西莫西完成签到 ,获得积分20
17秒前
HughWang完成签到,获得积分10
19秒前
伊小美发布了新的文献求助10
21秒前
笑点低夏旋完成签到,获得积分10
23秒前
搜集达人应助Tom的梦想采纳,获得10
27秒前
28秒前
丘比特应助haiwei采纳,获得10
28秒前
29秒前
30秒前
淡淡的新之完成签到,获得积分10
32秒前
OnMyWorldside发布了新的文献求助10
32秒前
竞风发布了新的文献求助10
32秒前
周六完成签到,获得积分10
32秒前
34秒前
ycj完成签到,获得积分10
35秒前
35秒前
36秒前
iNk应助笑点低蜜蜂采纳,获得20
37秒前
小鱼完成签到,获得积分10
38秒前
LXM发布了新的文献求助10
40秒前
英俊的铭应助科研通管家采纳,获得10
41秒前
李健应助科研通管家采纳,获得10
41秒前
思源应助科研通管家采纳,获得10
41秒前
starofjlu应助科研通管家采纳,获得30
41秒前
Akim应助科研通管家采纳,获得10
41秒前
大个应助科研通管家采纳,获得10
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159888
求助须知:如何正确求助?哪些是违规求助? 2810893
关于积分的说明 7889801
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630761
版权声明 602012