Path Planning for Unified Scheduling of Multi-Robot Based on BSO Algorithm

机器人 运动规划 导线 计算机科学 调度(生产过程) 算法 数学优化 移动机器人 任意角度路径规划 人工智能 数学 大地测量学 地理
作者
Guangping Qiu,Jincan Li
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:33 (07) 被引量:1
标识
DOI:10.1142/s0218126624501330
摘要

The technology for path planning of independent mobile robots is mature, but multi-robot path planning for unified scheduling and allocation is much more complex than single-robot path planning. This requires consideration of collision problems between robots, general optimal path problems, etc. This paper proposes the use of the BSO algorithm for unified scheduling and allocation of multiple robots to improve the efficiency of task execution. The BSO algorithm is a new type of intelligent optimization algorithm that uses clustering ideas to search for local optimal solutions and obtains global optimal solutions by comparing local optimal solutions. It also uses mutation ideas to increase the diversity of the algorithm and avoid becoming trapped in local optimal solutions. Using the GA/SA algorithm and the proposed BSO algorithm for computer simulation comparison, we obtained the optimal path planning for the three robots under unified scheduling. The total distance of the optimal path obtained by the BSO algorithm was 27.36% and 25.31% shorter than those of the GA and SA algorithms, respectively. To further test the performance of the BSO algorithm, we conducted additional experiments on the unified scheduling of multiple robots. The experimental results show that the proposed BSO algorithm can significantly improve the efficiency. The multi-robot under unified scheduling performs point-to-point path planning without collisions, and they can traverse all task target points in the shortest path without repetition. This algorithm is suitable for multi-robot tasks in large-scale environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LD完成签到 ,获得积分10
2秒前
xjy完成签到 ,获得积分10
2秒前
qzaima完成签到,获得积分10
2秒前
3秒前
xueshufengbujue完成签到,获得积分10
3秒前
楼寒天发布了新的文献求助10
3秒前
4秒前
科研通AI5应助111111111采纳,获得10
5秒前
5秒前
sunsunsun完成签到,获得积分10
5秒前
哎嘤斯坦完成签到,获得积分10
7秒前
7秒前
sweetbearm应助潦草采纳,获得10
8秒前
sunsunsun发布了新的文献求助10
8秒前
酷波er应助Mars采纳,获得10
9秒前
迪士尼在逃后母完成签到,获得积分10
9秒前
9秒前
我是老大应助su采纳,获得10
10秒前
hhh发布了新的文献求助10
11秒前
12秒前
科研通AI5应助魏伯安采纳,获得10
13秒前
13秒前
神可馨完成签到 ,获得积分10
14秒前
Hangerli发布了新的文献求助20
14秒前
HealthyCH完成签到,获得积分10
14秒前
li完成签到,获得积分10
15秒前
16秒前
ononon发布了新的文献求助10
18秒前
18秒前
liu完成签到,获得积分10
20秒前
LWJ发布了新的文献求助10
21秒前
22秒前
大反应釜完成签到,获得积分10
22秒前
TT发布了新的文献求助10
25秒前
Jenny发布了新的文献求助10
27秒前
27秒前
完美凝竹发布了新的文献求助10
27秒前
我是站长才怪应助细腻沅采纳,获得10
28秒前
JG完成签到 ,获得积分10
28秒前
hhh完成签到,获得积分20
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824