Enhancing Drug Repositioning through Local Interactive Learning with Bilinear Attention Networks

计算机科学 药物重新定位 成对比较 机器学习 人工智能 聚类分析 药品 数据挖掘 医学 药理学
作者
Xianfang Tang,Chang Zhou,Changcheng Lu,Yajie Meng,Junlin Xu,Xinrong Hu,Geng Tian,Jialiang Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1644-1655 被引量:21
标识
DOI:10.1109/jbhi.2023.3335275
摘要

Drug repositioning has emerged as a promising strategy for identifying new therapeutic applications for existing drugs. In this study, we present DRGBCN, a novel computational method that integrates heterogeneous information through a deep bilinear attention network to infer potential drugs for specific diseases. DRGBCN involves constructing a comprehensive drug-disease network by incorporating multiple similarity networks for drugs and diseases. Firstly, we introduce a layer attention mechanism to effectively learn the embeddings of graph convolutional layers from these networks. Subsequently, a bilinear attention network is constructed to capture pairwise local interactions between drugs and diseases. This combined approach enhances the accuracy and reliability of predictions. Finally, a multi-layer perceptron module is employed to evaluate potential drugs. Through extensive experiments on three publicly available datasets, DRGBCN demonstrates better performance over baseline methods in 10-fold cross-validation, achieving an average area under the receiver operating characteristic curve (AUROC) of 0.9399. Furthermore, case studies on bladder cancer and acute lymphoblastic leukemia confirm the practical application of DRGBCN in real-world drug repositioning scenarios. Importantly, our experimental results from the drug-disease network analysis reveal the successful clustering of similar drugs within the same community, providing valuable insights into drug-disease interactions. In conclusion, DRGBCN holds significant promise for uncovering new therapeutic applications of existing drugs, thereby contributing to the advancement of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助alone采纳,获得10
刚刚
可怜的游戏完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
xnz发布了新的文献求助10
3秒前
搜集达人应助hoshiran采纳,获得10
3秒前
HM完成签到,获得积分10
5秒前
姜临药完成签到 ,获得积分10
6秒前
7秒前
张真肇发布了新的文献求助10
7秒前
cyxismintgreen完成签到,获得积分10
8秒前
8秒前
9秒前
leisj完成签到 ,获得积分10
9秒前
10秒前
活泼的便当完成签到,获得积分10
10秒前
困屁鱼发布了新的文献求助30
10秒前
11秒前
科yt完成签到,获得积分10
11秒前
义气玫瑰完成签到,获得积分10
13秒前
kenti2023完成签到 ,获得积分10
13秒前
畅快黎昕完成签到,获得积分10
14秒前
14秒前
罗婉婷发布了新的文献求助10
14秒前
zhfliang发布了新的文献求助10
15秒前
超级幼旋发布了新的文献求助10
16秒前
桐桐应助candybear采纳,获得10
16秒前
16秒前
木木发布了新的文献求助10
16秒前
迅速的宛海完成签到 ,获得积分10
17秒前
忧郁子骞完成签到,获得积分10
18秒前
无敌猫猫头完成签到,获得积分10
18秒前
科研通AI6应助优秀的书萱采纳,获得10
18秒前
魏大宝完成签到,获得积分10
19秒前
Jasper应助Galato采纳,获得10
19秒前
沉默晓兰完成签到 ,获得积分10
19秒前
19秒前
千千完成签到,获得积分10
20秒前
bkagyin应助九转科研蛊采纳,获得10
20秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379532
求助须知:如何正确求助?哪些是违规求助? 4503848
关于积分的说明 14016757
捐赠科研通 4412672
什么是DOI,文献DOI怎么找? 2423885
邀请新用户注册赠送积分活动 1416773
关于科研通互助平台的介绍 1394345