Enhancing Drug Repositioning through Local Interactive Learning with Bilinear Attention Networks

计算机科学 药物重新定位 成对比较 机器学习 人工智能 聚类分析 药品 数据挖掘 医学 药理学
作者
Xianfang Tang,Chang Zhou,Changcheng Lu,Yajie Meng,Junlin Xu,Xinrong Hu,Geng Tian,Jialiang Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1644-1655 被引量:21
标识
DOI:10.1109/jbhi.2023.3335275
摘要

Drug repositioning has emerged as a promising strategy for identifying new therapeutic applications for existing drugs. In this study, we present DRGBCN, a novel computational method that integrates heterogeneous information through a deep bilinear attention network to infer potential drugs for specific diseases. DRGBCN involves constructing a comprehensive drug-disease network by incorporating multiple similarity networks for drugs and diseases. Firstly, we introduce a layer attention mechanism to effectively learn the embeddings of graph convolutional layers from these networks. Subsequently, a bilinear attention network is constructed to capture pairwise local interactions between drugs and diseases. This combined approach enhances the accuracy and reliability of predictions. Finally, a multi-layer perceptron module is employed to evaluate potential drugs. Through extensive experiments on three publicly available datasets, DRGBCN demonstrates better performance over baseline methods in 10-fold cross-validation, achieving an average area under the receiver operating characteristic curve (AUROC) of 0.9399. Furthermore, case studies on bladder cancer and acute lymphoblastic leukemia confirm the practical application of DRGBCN in real-world drug repositioning scenarios. Importantly, our experimental results from the drug-disease network analysis reveal the successful clustering of similar drugs within the same community, providing valuable insights into drug-disease interactions. In conclusion, DRGBCN holds significant promise for uncovering new therapeutic applications of existing drugs, thereby contributing to the advancement of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xixi发布了新的文献求助10
3秒前
5秒前
5秒前
彭于晏应助hewd3采纳,获得10
6秒前
popvich应助Azlne采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
干饭虫应助科研通管家采纳,获得10
7秒前
Rita应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
干饭虫应助科研通管家采纳,获得10
7秒前
干饭虫应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
8秒前
杨好圆完成签到,获得积分10
8秒前
8秒前
英俊的幻天完成签到,获得积分10
11秒前
smart发布了新的文献求助10
12秒前
12秒前
慕青应助时有落花至采纳,获得10
13秒前
13秒前
陈欣发布了新的文献求助10
13秒前
背后夜蓉发布了新的文献求助10
14秒前
Orange应助xixi采纳,获得10
15秒前
chowjb完成签到,获得积分10
17秒前
占囧发布了新的文献求助30
17秒前
务实青筠完成签到 ,获得积分10
17秒前
龙舞星完成签到,获得积分10
19秒前
默默完成签到,获得积分10
19秒前
卷卷完成签到,获得积分10
20秒前
香蕉觅云应助vivi采纳,获得10
20秒前
xxme77发布了新的文献求助10
20秒前
思源应助CY采纳,获得10
20秒前
20秒前
smart完成签到,获得积分10
20秒前
VDC应助朱珏虹采纳,获得30
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979699
求助须知:如何正确求助?哪些是违规求助? 4232313
关于积分的说明 13183302
捐赠科研通 4023465
什么是DOI,文献DOI怎么找? 2201316
邀请新用户注册赠送积分活动 1213777
关于科研通互助平台的介绍 1130020