Enhancing Drug Repositioning through Local Interactive Learning with Bilinear Attention Networks

计算机科学 药物重新定位 成对比较 机器学习 人工智能 聚类分析 药品 数据挖掘 医学 药理学
作者
Xianfang Tang,Chang Zhou,Changcheng Lu,Yajie Meng,Junlin Xu,Xinrong Hu,Geng Tian,Jialiang Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1644-1655 被引量:21
标识
DOI:10.1109/jbhi.2023.3335275
摘要

Drug repositioning has emerged as a promising strategy for identifying new therapeutic applications for existing drugs. In this study, we present DRGBCN, a novel computational method that integrates heterogeneous information through a deep bilinear attention network to infer potential drugs for specific diseases. DRGBCN involves constructing a comprehensive drug-disease network by incorporating multiple similarity networks for drugs and diseases. Firstly, we introduce a layer attention mechanism to effectively learn the embeddings of graph convolutional layers from these networks. Subsequently, a bilinear attention network is constructed to capture pairwise local interactions between drugs and diseases. This combined approach enhances the accuracy and reliability of predictions. Finally, a multi-layer perceptron module is employed to evaluate potential drugs. Through extensive experiments on three publicly available datasets, DRGBCN demonstrates better performance over baseline methods in 10-fold cross-validation, achieving an average area under the receiver operating characteristic curve (AUROC) of 0.9399. Furthermore, case studies on bladder cancer and acute lymphoblastic leukemia confirm the practical application of DRGBCN in real-world drug repositioning scenarios. Importantly, our experimental results from the drug-disease network analysis reveal the successful clustering of similar drugs within the same community, providing valuable insights into drug-disease interactions. In conclusion, DRGBCN holds significant promise for uncovering new therapeutic applications of existing drugs, thereby contributing to the advancement of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SAINT完成签到,获得积分10
刚刚
1秒前
3秒前
4秒前
iaskwho发布了新的文献求助10
4秒前
111完成签到,获得积分10
5秒前
5秒前
DarrenVan完成签到,获得积分10
8秒前
英俊的铭应助lk采纳,获得10
8秒前
lucky完成签到 ,获得积分10
8秒前
王国科发布了新的文献求助10
9秒前
高高的天亦完成签到 ,获得积分10
9秒前
小D发布了新的文献求助10
10秒前
村上春树的摩的完成签到 ,获得积分10
10秒前
Fox完成签到,获得积分20
11秒前
12秒前
一一完成签到 ,获得积分10
12秒前
13秒前
ccm应助科研通管家采纳,获得10
14秒前
Bio应助科研通管家采纳,获得150
14秒前
无花果应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
15秒前
ccm应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
若ruofeng应助科研通管家采纳,获得20
15秒前
dew应助科研通管家采纳,获得10
15秒前
15秒前
若ruofeng应助科研通管家采纳,获得20
15秒前
馆长应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
若ruofeng应助科研通管家采纳,获得20
15秒前
若ruofeng应助科研通管家采纳,获得20
15秒前
若ruofeng应助科研通管家采纳,获得20
15秒前
15秒前
若ruofeng应助科研通管家采纳,获得20
15秒前
若ruofeng应助科研通管家采纳,获得20
15秒前
若ruofeng应助科研通管家采纳,获得20
15秒前
今后应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514