Enhancing Drug Repositioning through Local Interactive Learning with Bilinear Attention Networks

计算机科学 药物重新定位 成对比较 机器学习 人工智能 聚类分析 药品 数据挖掘 医学 药理学
作者
Xianfang Tang,Chang Zhou,Changcheng Lu,Yajie Meng,Junlin Xu,Xinrong Hu,Geng Tian,Jialiang Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1644-1655 被引量:21
标识
DOI:10.1109/jbhi.2023.3335275
摘要

Drug repositioning has emerged as a promising strategy for identifying new therapeutic applications for existing drugs. In this study, we present DRGBCN, a novel computational method that integrates heterogeneous information through a deep bilinear attention network to infer potential drugs for specific diseases. DRGBCN involves constructing a comprehensive drug-disease network by incorporating multiple similarity networks for drugs and diseases. Firstly, we introduce a layer attention mechanism to effectively learn the embeddings of graph convolutional layers from these networks. Subsequently, a bilinear attention network is constructed to capture pairwise local interactions between drugs and diseases. This combined approach enhances the accuracy and reliability of predictions. Finally, a multi-layer perceptron module is employed to evaluate potential drugs. Through extensive experiments on three publicly available datasets, DRGBCN demonstrates better performance over baseline methods in 10-fold cross-validation, achieving an average area under the receiver operating characteristic curve (AUROC) of 0.9399. Furthermore, case studies on bladder cancer and acute lymphoblastic leukemia confirm the practical application of DRGBCN in real-world drug repositioning scenarios. Importantly, our experimental results from the drug-disease network analysis reveal the successful clustering of similar drugs within the same community, providing valuable insights into drug-disease interactions. In conclusion, DRGBCN holds significant promise for uncovering new therapeutic applications of existing drugs, thereby contributing to the advancement of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放的从菡完成签到 ,获得积分10
刚刚
刚刚
夏浅完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
FR完成签到,获得积分10
2秒前
游标卡尺不孤独完成签到,获得积分20
2秒前
3秒前
苏苏阿苏完成签到 ,获得积分10
4秒前
5秒前
5秒前
cckk完成签到,获得积分10
5秒前
5秒前
冷静雨完成签到,获得积分10
7秒前
kingsley320发布了新的文献求助10
8秒前
专注寻菱完成签到,获得积分10
8秒前
翊瑾完成签到,获得积分10
9秒前
千逐完成签到,获得积分10
9秒前
打打应助Yongander采纳,获得10
10秒前
KIKIKI发布了新的文献求助10
12秒前
胡不归完成签到,获得积分20
14秒前
小豆包完成签到 ,获得积分10
14秒前
14秒前
想和你陈成阿狗完成签到,获得积分10
14秒前
xiaoliu完成签到,获得积分10
15秒前
沉默的凝荷完成签到,获得积分10
16秒前
合适的平安完成签到 ,获得积分10
17秒前
PHW完成签到,获得积分10
19秒前
19秒前
曹先生完成签到,获得积分10
20秒前
20秒前
21秒前
淡定的安白完成签到,获得积分10
21秒前
铜离子完成签到,获得积分10
21秒前
图图发布了新的文献求助10
24秒前
26秒前
世无我发布了新的文献求助10
28秒前
ttc完成签到,获得积分10
28秒前
染墨绘梨衣完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294178
求助须知:如何正确求助?哪些是违规求助? 4444140
关于积分的说明 13832167
捐赠科研通 4328118
什么是DOI,文献DOI怎么找? 2375950
邀请新用户注册赠送积分活动 1371278
关于科研通互助平台的介绍 1336386