巴基斯坦卢比
吉西他滨
癌症研究
基因敲除
细胞培养
转移
基因沉默
化学
细胞周期
药理学
生物
细胞
医学
丙酮酸激酶
癌症
糖酵解
内科学
生物化学
酶
基因
遗传学
作者
Wenna Yu,Fuling Zeng,Yang Xiao,Liuyan Chen,Hengdong Qu,Jian Hong,Chen Qu,Guohua Cheng
标识
DOI:10.1016/j.cbi.2023.110816
摘要
Gemcitabine is considered the standard first-line chemotherapeutic agent for patients with intrahepatic cholangiocarcinoma (ICC). However, its therapeutic efficacy is hampered by the development of chemoresistance. Pyruvate kinase M2 (PKM2), a crucial mediator of the final step in glycolysis, has been implicated in the origination and advancement of diverse malignancies. Its expression is increased in many tumor types and this may correlate with increased drug sensitivity. However, the specific effect of PKM2 on the gemcitabine sensitivity in ICC remains to be elucidated. In this research, we aimed to elucidate the role and functional significance of PKM2 in ICC, as well as the heightened susceptibility of ICC cells to gemcitabine by targeting PKM2 and the underlying molecular mechanisms. Immunohistochemical and immunofluorescence analyses revealed elevated expression of PKM2 in both tumor cells and macrophages in human ICC tissues. Reducing PKM2 levels significantly restrained the proliferation of tumor cells, impeded cell cycle advance, induced programmed cell death, and suppressed metastasis. In addition, knockdown or pharmacological inhibition of PKM2 could enhance the response of ICC cells to gemcitabine in vitro. Interestingly, conditioned medium co-culture system suggested that conditioned medium from M2 macrophages increased gemcitabine sensitivity of ICC cells. However, silencing PKM2 or pharmacological inhibition of PKM2 in M2 macrophages did not ameliorate the gemcitabine resistance mediated by M2 macrophages derived conditioned medium. Mechanistically, downregulation of PKM2 repressed the expression of β-catenin and its downstream transcriptional targets, thereby hindering the propagation of β-catenin signaling cascade. Finally, the results of the subcutaneous xenograft experiment in nude mice provided compelling evidence of a synergistic interaction between PKM2-IN-1 and gemcitabine in vivo. In summary, we reported that PKM2 may function as an advantageous target for increasing the sensitivity of ICC to gemcitabine treatment. Targeting PKM2 improves the gemcitabine sensitivity of ICC cells via inhibiting β-catenin signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI