差别隐私
计算机科学
噪音(视频)
采样(信号处理)
高斯噪声
限制
高斯分布
计算机安全
计算
安全多方计算
钥匙(锁)
差速器(机械装置)
可信第三方
密码学
算法
电信
工程类
人工智能
机械工程
物理
量子力学
探测器
图像(数学)
航空航天工程
作者
Chengkun Wei,Ruijing Yu,Yuan Fan,Wenzhi Chen,Tianhao Wang
标识
DOI:10.1145/3576915.3616641
摘要
Differential Privacy (DP) is a widely used technique for protecting individuals' privacy by limiting what can be inferred about them from aggregate data. Recently, there have been efforts to implement DP using Secure Multi-Party Computation (MPC) to achieve high utility without the need for a trusted third party. One of the key components of implementing DP in MPC is noise sampling. Our work presents the first MPC solution for sampling discrete Gaussian, a common type of noise used for constructing DP mechanisms, which plays nicely with malicious secure MPC protocols.
科研通智能强力驱动
Strongly Powered by AbleSci AI