Diagnosing Rolling-Element Bearing Faults in the Real World: Problem Solved?

计算机科学 人工智能 水准点(测量) 分类器(UML) 机器学习 背景(考古学) 断层(地质) 数据挖掘 地理 地质学 地震学 考古 大地测量学
作者
Yee Wei Law,Yu Qiao,Christopher W.K. Chow,Romeo Marian,Neda Gorjian Jolfaei,Nima Gorjian,Jeng‐Shyang Pan
标识
DOI:10.1109/iecon51785.2023.10312154
摘要

An issue of great concern in the maintenance of critical infrastructures is the timely and accurate detection of mechanical faults, before these faults deteriorate into failures, causing major service disruptions. The ubiquity of rolling-element bearings (REBs) provides much incentives for online diagnosis of REB faults, spurring a crescendo of research activities that started decades ago. Near-perfect accuracies of state-of-the-art (SOTA) classifiers leveraging deep learning (DL) on the public-domain Case Western Reserve University (CWRU) dataset have been reported. However, the faults covered by this dataset were artificially induced in a controlled environment to bypass the class imbalance problem, and do not include cage faults. Among the open questions to be addressed are: How reproducible are SOTA performances? What are the associated resource requirements? How transferable is SOTA classification performance from CWRU data to actual field data covering naturally occurring faults? How well do SOTA classifiers perform when trained on this real-world dataset, without and with mitigation of the class imbalance problem? How generalisable is classifier performance in the real-world context? Set out to answer the preceding questions, the experimental study presented here provides (i) benchmark results on the CWRU dataset and a real-world dataset from South Australian Water Corporation (SA Water), and (ii) derived from the benchmark results, new insights regarding the state of the research field as well as an answer to the question in the title of this paper: is the problem of REB fault diagnosis a solved problem?
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
胡萝卜完成签到,获得积分10
2秒前
yyy发布了新的文献求助10
3秒前
3秒前
6秒前
家伟发布了新的文献求助10
6秒前
Profeto应助明年今日采纳,获得10
6秒前
cavendipeng应助DC采纳,获得10
6秒前
7秒前
9秒前
Ava应助yyy采纳,获得30
9秒前
千千完成签到,获得积分10
10秒前
徐芭拉完成签到,获得积分20
10秒前
黑色土豆发布了新的文献求助10
10秒前
单薄的半鬼完成签到,获得积分10
10秒前
徐芭拉发布了新的文献求助10
13秒前
sun发布了新的文献求助10
14秒前
biubiudididi发布了新的文献求助10
14秒前
15秒前
泥嚎发布了新的文献求助10
15秒前
笨笨的晓兰完成签到 ,获得积分10
15秒前
16秒前
ding应助水下月采纳,获得10
16秒前
debuff完成签到,获得积分10
18秒前
18秒前
wanci应助胡萝卜采纳,获得10
18秒前
20秒前
刻苦慕晴完成签到 ,获得积分10
20秒前
Ava应助懦弱的幼旋采纳,获得10
22秒前
22秒前
科研通AI2S应助哭泣的金鱼采纳,获得10
23秒前
hyhyhyhy发布了新的文献求助10
23秒前
27秒前
yulijuan发布了新的文献求助10
27秒前
29秒前
xinyingking发布了新的文献求助30
29秒前
30秒前
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176