Prediction and related genes of cancer distant metastasis based on deep learning

转移 骨转移 癌症 前列腺癌 基因 癌症研究 乳腺癌 肺癌 癌细胞 肝癌 生物 医学 肿瘤科 内科学 遗传学
作者
Weiluo Cai,Mo Cheng,Yi Wang,Peihang Xu,Xi Yang,Zhengwang Sun,Wangjun Yan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107664-107664 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107664
摘要

Cancer metastasis is one of the main causes of cancer progression and difficulty in treatment. Genes play a key role in the process of cancer metastasis, as they can influence tumor cell invasiveness, migration ability and fitness. At the same time, there is heterogeneity in the organs of cancer metastasis. Breast cancer, prostate cancer, etc. tend to metastasize in the bone. Previous studies have pointed out that the occurrence of metastasis is closely related to which tissue is transferred to and genes. In this paper, we identified genes associated with cancer metastasis to different tissues based on LASSO and Pearson correlation coefficients. In total, we identified 45 genes associated with bone metastases, 89 genes associated with lung metastases, and 86 genes associated with liver metastases. Through the expression of these genes, we propose a CNN-based model to predict the occurrence of metastasis. We call this method MDCNN, which introduces a modulation mechanism that allows the weights of convolution kernels to be adjusted at different positions and feature maps, thereby adaptively changing the convolution operation at different positions. Experiments have proved that MDCNN has achieved satisfactory prediction accuracy in bone metastasis, lung metastasis and liver metastasis, and is better than other 4 methods of the same kind. We performed enrichment analysis and immune infiltration analysis on bone metastasis-related genes, and found multiple pathways and GO terms related to bone metastasis, and found that the abundance of macrophages and monocytes was the highest in patients with bone metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
英俊的铭应助yyj采纳,获得10
刚刚
SV发布了新的文献求助10
刚刚
1秒前
12发布了新的文献求助10
1秒前
JamesPei应助化学狗采纳,获得10
1秒前
胡图图发布了新的文献求助10
1秒前
2秒前
xm完成签到,获得积分10
3秒前
谦让的含海完成签到,获得积分10
3秒前
所所应助包容的剑采纳,获得10
3秒前
3秒前
4秒前
lynn_zhang发布了新的文献求助10
4秒前
5秒前
xh发布了新的文献求助10
5秒前
所所应助luoshi采纳,获得10
5秒前
飞龙在天完成签到 ,获得积分10
5秒前
深爱不疑完成签到,获得积分10
6秒前
知识四面八方来完成签到 ,获得积分10
6秒前
我就是我完成签到,获得积分10
6秒前
6秒前
6秒前
heart完成签到,获得积分10
6秒前
keroro发布了新的文献求助10
7秒前
8秒前
pzc发布了新的文献求助10
8秒前
深爱不疑发布了新的文献求助10
9秒前
jennie完成签到 ,获得积分10
9秒前
徐徐发布了新的文献求助80
9秒前
不信慕斯完成签到,获得积分10
9秒前
Jokeypu完成签到,获得积分10
9秒前
gnr2000发布了新的文献求助30
10秒前
10秒前
song99完成签到,获得积分10
10秒前
清醒的ZY发布了新的文献求助50
10秒前
二小发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762