Prediction and related genes of cancer distant metastasis based on deep learning

转移 骨转移 癌症 前列腺癌 基因 癌症研究 乳腺癌 肺癌 癌细胞 肝癌 生物 医学 肿瘤科 内科学 遗传学
作者
Weiluo Cai,Mo Cheng,Yi Wang,Peihang Xu,Xi Yang,Zhengwang Sun,Wangjun Yan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107664-107664 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107664
摘要

Cancer metastasis is one of the main causes of cancer progression and difficulty in treatment. Genes play a key role in the process of cancer metastasis, as they can influence tumor cell invasiveness, migration ability and fitness. At the same time, there is heterogeneity in the organs of cancer metastasis. Breast cancer, prostate cancer, etc. tend to metastasize in the bone. Previous studies have pointed out that the occurrence of metastasis is closely related to which tissue is transferred to and genes. In this paper, we identified genes associated with cancer metastasis to different tissues based on LASSO and Pearson correlation coefficients. In total, we identified 45 genes associated with bone metastases, 89 genes associated with lung metastases, and 86 genes associated with liver metastases. Through the expression of these genes, we propose a CNN-based model to predict the occurrence of metastasis. We call this method MDCNN, which introduces a modulation mechanism that allows the weights of convolution kernels to be adjusted at different positions and feature maps, thereby adaptively changing the convolution operation at different positions. Experiments have proved that MDCNN has achieved satisfactory prediction accuracy in bone metastasis, lung metastasis and liver metastasis, and is better than other 4 methods of the same kind. We performed enrichment analysis and immune infiltration analysis on bone metastasis-related genes, and found multiple pathways and GO terms related to bone metastasis, and found that the abundance of macrophages and monocytes was the highest in patients with bone metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
twob完成签到,获得积分10
刚刚
英吉利25发布了新的文献求助50
刚刚
medzhou完成签到,获得积分10
刚刚
tanghong完成签到,获得积分10
刚刚
蔚岚影落完成签到,获得积分10
刚刚
刚刚
言余完成签到,获得积分10
1秒前
Zo完成签到,获得积分10
1秒前
Eton完成签到,获得积分10
1秒前
哈基米发布了新的文献求助10
1秒前
zhuo完成签到,获得积分10
1秒前
1秒前
herococa应助大观天下采纳,获得10
1秒前
可怜的小羊完成签到,获得积分10
2秒前
Starry发布了新的文献求助10
2秒前
温大林完成签到,获得积分10
2秒前
2秒前
123456完成签到,获得积分10
3秒前
chaobada发布了新的文献求助10
3秒前
么么蛋发布了新的文献求助10
4秒前
随风完成签到,获得积分0
5秒前
5秒前
5秒前
爱吃草莓完成签到,获得积分10
6秒前
着急的如霜关注了科研通微信公众号
6秒前
Xltox完成签到,获得积分10
7秒前
123321给123321的求助进行了留言
7秒前
Chris完成签到,获得积分10
7秒前
北璃完成签到,获得积分20
8秒前
CodeCraft应助冷艳的火龙果采纳,获得10
8秒前
哈基米完成签到,获得积分10
9秒前
jameslee04完成签到 ,获得积分10
9秒前
高高的坤完成签到 ,获得积分10
10秒前
北璃发布了新的文献求助10
10秒前
羽翼球发布了新的文献求助30
10秒前
11秒前
满意外套完成签到,获得积分10
11秒前
简单小刺猬完成签到 ,获得积分10
12秒前
玩是罪恶的完成签到,获得积分10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855