Prediction and related genes of cancer distant metastasis based on deep learning

转移 骨转移 癌症 前列腺癌 基因 癌症研究 乳腺癌 肺癌 癌细胞 肝癌 生物 医学 肿瘤科 内科学 遗传学
作者
Weiluo Cai,Mo Cheng,Yi Wang,Peihang Xu,Xi Yang,Zhengwang Sun,Wangjun Yan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107664-107664 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.107664
摘要

Cancer metastasis is one of the main causes of cancer progression and difficulty in treatment. Genes play a key role in the process of cancer metastasis, as they can influence tumor cell invasiveness, migration ability and fitness. At the same time, there is heterogeneity in the organs of cancer metastasis. Breast cancer, prostate cancer, etc. tend to metastasize in the bone. Previous studies have pointed out that the occurrence of metastasis is closely related to which tissue is transferred to and genes. In this paper, we identified genes associated with cancer metastasis to different tissues based on LASSO and Pearson correlation coefficients. In total, we identified 45 genes associated with bone metastases, 89 genes associated with lung metastases, and 86 genes associated with liver metastases. Through the expression of these genes, we propose a CNN-based model to predict the occurrence of metastasis. We call this method MDCNN, which introduces a modulation mechanism that allows the weights of convolution kernels to be adjusted at different positions and feature maps, thereby adaptively changing the convolution operation at different positions. Experiments have proved that MDCNN has achieved satisfactory prediction accuracy in bone metastasis, lung metastasis and liver metastasis, and is better than other 4 methods of the same kind. We performed enrichment analysis and immune infiltration analysis on bone metastasis-related genes, and found multiple pathways and GO terms related to bone metastasis, and found that the abundance of macrophages and monocytes was the highest in patients with bone metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Linya发布了新的文献求助10
刚刚
白菜发布了新的文献求助10
刚刚
丁一发布了新的文献求助10
1秒前
1秒前
14122发布了新的文献求助10
1秒前
wgm发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
七七发布了新的文献求助10
3秒前
xbb88完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
cool_随风完成签到,获得积分10
5秒前
Patata发布了新的文献求助30
5秒前
难过冰淇淋完成签到,获得积分10
5秒前
5秒前
852应助哆啦采纳,获得10
5秒前
liuzhen发布了新的文献求助10
6秒前
乐乐应助Gitope采纳,获得10
6秒前
舒心寄风完成签到,获得积分10
6秒前
7秒前
7秒前
想不想发布了新的文献求助10
7秒前
李爱国应助未知数采纳,获得10
8秒前
LH发布了新的文献求助10
8秒前
ddl7发布了新的文献求助10
8秒前
8秒前
8秒前
涵泽发布了新的文献求助20
9秒前
111完成签到 ,获得积分10
9秒前
zhizhi发布了新的文献求助10
9秒前
年年发布了新的文献求助20
9秒前
9秒前
莫西莫西发布了新的文献求助10
10秒前
10秒前
G浅浅完成签到,获得积分10
10秒前
一一关注了科研通微信公众号
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252054
求助须知:如何正确求助?哪些是违规求助? 4415915
关于积分的说明 13747919
捐赠科研通 4287735
什么是DOI,文献DOI怎么找? 2352603
邀请新用户注册赠送积分活动 1349374
关于科研通互助平台的介绍 1308916