ConvGeN: A convex space learning approach for deep-generative oversampling and imbalanced classification of small tabular datasets

过采样 人工智能 计算机科学 分类器(UML) 机器学习 生成语法 班级(哲学) 线性分类器 插值(计算机图形学) 深度学习 模式识别(心理学) 带宽(计算) 图像(数学) 计算机网络
作者
Kristian Schultz,Saptarshi Bej,Waldemar Hahn,Markus Wolfien,Prashant K. Srivastava,Olaf Wolkenhauer
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:147: 110138-110138 被引量:5
标识
DOI:10.1016/j.patcog.2023.110138
摘要

Oversampling is commonly used to improve classifier performance for small tabular imbalanced datasets. State-of-the-art linear interpolation approaches can be used to generate synthetic samples from the convex space of the minority class. Generative networks are common deep learning approaches for synthetic sample generation. However, their scope on synthetic tabular data generation in the context of imbalanced classification is not adequately explored. In this article, we show that existing deep generative models perform poorly compared to linear interpolation-based approaches for imbalanced classification problems on small tabular datasets. To overcome this, we propose a deep generative model, ConvGeN that combines the idea of convex space learning with deep generative models. ConvGeN learns coefficients for the convex combinations of the minority class samples, such that the synthetic data is distinct enough from the majority class. Our benchmarking experiments demonstrate that our proposed model ConvGeN improves imbalanced classification on such small datasets, as compared to existing deep generative models, while being on par with the existing linear interpolation approaches. Moreover, we discuss how our model can be used for synthetic tabular data generation in general, even outside the scope of data imbalance, and thus improves the overall applicability of convex space learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
利多卡因完成签到,获得积分10
刚刚
领导范儿应助程昱采纳,获得10
刚刚
田様应助西瓜采纳,获得10
1秒前
1秒前
Fareth发布了新的文献求助10
1秒前
1秒前
1秒前
leranlily完成签到,获得积分10
1秒前
科研通AI6应助zhaohuanjun采纳,获得10
2秒前
3秒前
华123发布了新的文献求助10
3秒前
3秒前
勤恳的雅青完成签到,获得积分10
4秒前
田様应助科研通管家采纳,获得10
4秒前
yu发布了新的文献求助10
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
田様应助张棋采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
哈哈哈哈哈哈完成签到,获得积分10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
科研通AI6应助清风与你采纳,获得30
4秒前
深情安青应助科研通管家采纳,获得30
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
微笑猫咪发布了新的文献求助10
5秒前
5秒前
诸觅双完成签到 ,获得积分10
5秒前
乂氼发布了新的文献求助10
5秒前
6秒前
444完成签到,获得积分10
6秒前
7秒前
轻松不二完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562