From Proteins to Ligands: Decoding Deep Learning Methods for Binding Affinity Prediction

概化理论 生物信息学 计算机科学 人工智能 配体(生物化学) 计算生物学 机器学习 图形 化学 生物 数学 理论计算机科学 基因 生物化学 统计 受体
作者
Rohan Gorantla,Alžbeta Kubincová,Andrea Y. Weiße,Antonia S. J. S. Mey
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.jcim.3c01208
摘要

Accurate in silico prediction of protein-ligand binding affinity is important in the early stages of drug discovery. Deep learning-based methods exist but have yet to overtake more conventional methods such as giga-docking largely due to their lack of generalizability. To improve generalizability, we need to understand what these models learn from input protein and ligand data. We systematically investigated a sequence-based deep learning framework to assess the impact of protein and ligand encodings on predicting binding affinities for commonly used kinase data sets. The role of proteins is studied using convolutional neural network-based encodings obtained from sequences and graph neural network-based encodings enriched with structural information from contact maps. Ligand-based encodings are generated from graph-neural networks. We test different ligand perturbations by randomizing node and edge properties. For proteins, we make use of 3 different protein contact generation methods (AlphaFold2, Pconsc4, and ESM-1b) and compare these with a random control. Our investigation shows that protein encodings do not substantially impact the binding predictions, with no statistically significant difference in binding affinity for KIBA in the investigated metrics (concordance index, Pearson's R Spearman's Rank, and RMSE). Significant differences are seen for ligand encodings with random ligands and random ligand node properties, suggesting a much bigger reliance on ligand data for the learning tasks. Using different ways to combine protein and ligand encodings did not show a significant change in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助金博洋采纳,获得18
刚刚
刚刚
天天快乐应助哈哈王采纳,获得10
1秒前
1秒前
啦啦啦啦啦啦啦完成签到,获得积分10
1秒前
1秒前
呓语完成签到,获得积分10
2秒前
上官若男应助csy采纳,获得10
2秒前
可爱的雨柏完成签到,获得积分10
3秒前
蛙趣完成签到,获得积分10
3秒前
3秒前
果果完成签到,获得积分10
3秒前
yanwowo完成签到,获得积分10
3秒前
4秒前
星星完成签到,获得积分10
4秒前
4秒前
laojian完成签到 ,获得积分10
4秒前
李健应助深情傲柔采纳,获得10
5秒前
栓Q发布了新的文献求助10
5秒前
5秒前
CT民工发布了新的文献求助10
5秒前
mslln发布了新的文献求助10
5秒前
科研完成签到,获得积分20
6秒前
7秒前
PGZ完成签到,获得积分10
7秒前
醒醒完成签到,获得积分10
7秒前
赘婿应助ing采纳,获得10
8秒前
zhou完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
周晓发布了新的文献求助10
9秒前
beyond完成签到,获得积分10
10秒前
10秒前
做饭不咸完成签到,获得积分10
11秒前
无极微光应助木光采纳,获得20
11秒前
12秒前
www发布了新的文献求助10
12秒前
万能图书馆应助yanwowo采纳,获得10
12秒前
黄嘉慧完成签到 ,获得积分10
13秒前
想发一篇贾克斯完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978