Phase-Dislocation-Mediated High-Dimensional Fractional Acoustic-Vortex Communication

拓扑(电路) 多路复用 计算机科学 相(物质) 涡流 湍流 物理 电信 工程类 机械 电气工程 量子力学
作者
Ruijie Cao,Gepu Guo,Yue Wei,Yang Huang,Xinpeng Li,Chengzhi Kai,Yuzhi Li,Juan Tu,Dong Zhang,Peng Xi,Qingyu Ma
出处
期刊:Research [American Association for the Advancement of Science]
卷期号:6 被引量:3
标识
DOI:10.34133/research.0280
摘要

With unlimited topological modes in mathematics, the fractional orbital angular momentum (FOAM) demonstrates the potential to infinitely increase the channel capacity in acoustic-vortex (AV) communications. However, the accuracy and stability of FOAM recognition are still limited by the nonorthogonality and poor anti-interference of fractional AV beams. The popular machine learning, widely used in optics based on large datasets of images, does not work in acoustics because of the huge engineering of the 2-dimensional point-by-point measurement. Here, we report a strategy of phase-dislocation-mediated high-dimensional fractional AV communication based on pair-FOAM multiplexing, circular sparse sampling, and machine learning. The unique phase dislocation corresponding to the topological charge provides important physical guidance to recognize FOAMs and reduce sampling points from theory to practice. A straightforward convolutional neural network considering turbulence and misalignment is further constructed to achieve the stable and accurate communication without involving experimental data. We experimentally present that the 32-point dual-ring sampling can realize the 10-bit information transmission in a limited topological charge scope from ±0.6 to ±2.4 with the FOAM resolution of 0.2, which greatly reduce the divergence in AV communications. The infinitely expanded channel capacity is further verified by the improved FOAM resolution of 0.025. Compared with other milestone works, our strategy reaches 3-fold OAM utilization, 4-fold information level, and 5-fold OAM resolution. Because of the extra advantages of high dimension, high speed, and low divergence, this technology may shed light on the next-generation AV communication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小七完成签到 ,获得积分20
2秒前
2秒前
帅气西牛完成签到,获得积分10
5秒前
6秒前
传奇3应助虚幻的青槐采纳,获得10
7秒前
8秒前
科研通AI5应助超级铃铛采纳,获得10
9秒前
111发布了新的文献求助10
11秒前
橙子慢慢来完成签到,获得积分10
11秒前
12秒前
完美世界应助xu采纳,获得10
14秒前
露露发布了新的文献求助10
14秒前
16秒前
大个应助风中亦玉采纳,获得10
16秒前
禾薇完成签到,获得积分10
18秒前
huahuahua发布了新的文献求助30
19秒前
19秒前
伊丽莎白完成签到,获得积分10
20秒前
研友_VZG7GZ应助李同学采纳,获得10
21秒前
wpie99发布了新的文献求助30
26秒前
wangmou完成签到,获得积分10
26秒前
科研通AI5应助江谷林采纳,获得10
30秒前
30秒前
Hello应助禾薇采纳,获得10
31秒前
科研通AI5应助踏实的芸遥采纳,获得10
32秒前
科研通AI5应助蒹葭采纳,获得10
33秒前
李同学发布了新的文献求助10
34秒前
34秒前
杭永程完成签到 ,获得积分10
37秒前
37秒前
博弈春秋完成签到,获得积分10
40秒前
大林发布了新的文献求助10
40秒前
41秒前
43秒前
Crystal完成签到 ,获得积分10
43秒前
海阔天空完成签到,获得积分0
43秒前
江谷林完成签到,获得积分10
45秒前
45秒前
45秒前
45秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423