聚类分析
数据挖掘
计算机科学
期限(时间)
网格
分布式发电
师(数学)
空间相关性
功率(物理)
人工智能
地理
数学
电信
物理
算术
大地测量学
量子力学
作者
Wenzhe Lai,Zhao Zhen,Fei Wang,Wenjie Fu,Junlong Wang,Xudong Zhang,Hui Ren
出处
期刊:Energy
[Elsevier]
日期:2023-11-21
卷期号:288: 129716-129716
被引量:11
标识
DOI:10.1016/j.energy.2023.129716
摘要
Accurate regional distributed PV power forecasting provides data support for power grid management and optimal operation. Distributed PV has the characteristics of large quantity, small capacity and difficulty in obtaining meteorological data. Statistical upscaling method is commonly used to forecast regional power. However, the current research ignores how to reasonably divide the sub-regions with similar output characteristics and mine the spatial and temporal correlation between different sub-regions. Therefore, this paper proposes a short-term regional distributed PV power forecasting method based on sub-region division considering spatio-temporal correlation. Firstly, the representative power plant is selected after dividing the sub-region by the AP clustering algorithm. Then, the GCN is used to extract spatial correlation features, and the LSTM is used to extract the evolution features of dynamic spatial correlation features, and the power forecasting models of representative plants in different weather types are established. Finally, the data integrity and similarity of the sub-region are scored, and the upscaling weight is determined to realize the power forecasting of the whole region. The distributed PV power generation data of Pingshan County, Hebei Province, China is used for simulation test. The results show that the forecasting method proposed has higher forecasting accuracy than the traditional model.
科研通智能强力驱动
Strongly Powered by AbleSci AI