Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations

聚类分析 数据挖掘 计算机科学 期限(时间) 网格 分布式发电 师(数学) 空间相关性 功率(物理) 人工智能 地理 数学 电信 物理 算术 大地测量学 量子力学
作者
Wenzhe Lai,Zhao Zhen,Fei Wang,Wenjie Fu,Junlong Wang,Xudong Zhang,Hui Ren
出处
期刊:Energy [Elsevier]
卷期号:288: 129716-129716 被引量:11
标识
DOI:10.1016/j.energy.2023.129716
摘要

Accurate regional distributed PV power forecasting provides data support for power grid management and optimal operation. Distributed PV has the characteristics of large quantity, small capacity and difficulty in obtaining meteorological data. Statistical upscaling method is commonly used to forecast regional power. However, the current research ignores how to reasonably divide the sub-regions with similar output characteristics and mine the spatial and temporal correlation between different sub-regions. Therefore, this paper proposes a short-term regional distributed PV power forecasting method based on sub-region division considering spatio-temporal correlation. Firstly, the representative power plant is selected after dividing the sub-region by the AP clustering algorithm. Then, the GCN is used to extract spatial correlation features, and the LSTM is used to extract the evolution features of dynamic spatial correlation features, and the power forecasting models of representative plants in different weather types are established. Finally, the data integrity and similarity of the sub-region are scored, and the upscaling weight is determined to realize the power forecasting of the whole region. The distributed PV power generation data of Pingshan County, Hebei Province, China is used for simulation test. The results show that the forecasting method proposed has higher forecasting accuracy than the traditional model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiang应助css采纳,获得10
刚刚
高灵雨发布了新的文献求助10
刚刚
申申如也完成签到,获得积分10
1秒前
ZangXy完成签到 ,获得积分10
1秒前
zzz完成签到,获得积分10
1秒前
1秒前
默默的甜瓜完成签到,获得积分10
2秒前
周老八发布了新的文献求助10
2秒前
2秒前
4秒前
好大雷完成签到,获得积分10
5秒前
5秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
5秒前
JamesPei应助账户已注销采纳,获得80
5秒前
申申如也发布了新的文献求助10
7秒前
bobo完成签到 ,获得积分10
8秒前
模糊中正应助chenmin采纳,获得30
8秒前
烤肠关注了科研通微信公众号
9秒前
酒肆六八发布了新的文献求助10
9秒前
水的颜色发布了新的文献求助10
9秒前
谦让的青亦完成签到,获得积分10
10秒前
三徙教完成签到,获得积分10
10秒前
10秒前
11秒前
Ellen完成签到 ,获得积分10
11秒前
科研通AI2S应助夏大雨采纳,获得10
12秒前
慕青应助折耳根采纳,获得10
12秒前
13秒前
Ava应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
冯月应助科研通管家采纳,获得30
13秒前
13秒前
huo应助科研通管家采纳,获得10
13秒前
14秒前
毛豆应助畅快忆秋采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得30
14秒前
Ava应助科研通管家采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308961
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508381
捐赠科研通 2617401
什么是DOI,文献DOI怎么找? 1430069
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649234