Automatic echocardiographic evaluation of the probability of pulmonary hypertension using machine learning

医学 胸骨旁线 肺动脉高压 接收机工作特性 机器学习 人工智能 肺动脉 曲线下面积 曲线下面积 队列 心导管术 心脏病学 内科学 放射科 计算机科学 药代动力学
作者
Zuwei Liao,Kai-Kai Liu,Shangwei Ding,Qin‐Hua Zhao,Yong Jiang,Lan Wang,Taoran Huang,Lifang Yang,Dongling Luo,Erlei Zhang,Yu Zhang,Caojin Zhang,Xiaowei Xu,Hongwen Fei
出处
期刊:Pulmonary circulation [Wiley]
卷期号:13 (3) 被引量:4
标识
DOI:10.1002/pul2.12272
摘要

Echocardiography, a simple and noninvasive tool, is the first choice for screening pulmonary hypertension (PH). However, accurate assessment of PH, incorporating both the pulmonary artery pressures and additional signs for PH remained unsatisfied. Thus, this study aimed to develop a machine learning (ML) model that can automatically evaluate the probability of PH. This cohort included data from 346 (275 for training set and internal validation set and 71 for external validation set) patients with suspected PH patients and receiving right heart catheterization. Echocardiographic images on parasternal short axis-papillary muscle level (PSAX-PML) view from all patients were collected, labeled, and preprocessed. Local features from each image were extracted and subsequently integrated to build a ML model. By adjusting the parameters of the model, the model with the best prediction effect is finally constructed. We used receiver-operating characteristic analysis to evaluate model performance and compared the ML model with the traditional methods. The accuracy of the ML model for diagnosis of PH was significantly higher than the traditional method (0.945 vs. 0.892, p = 0.027 [area under the curve [AUC]]). Similar findings were observed in subgroup analysis and validated in the external validation set (AUC = 0.950 [95% CI: 0.897-1.000]). In summary, ML methods could automatically extract features from traditional PSAX-PML view and automatically assess the probability of PH, which were found to outperform traditional echocardiographic assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZZH发布了新的文献求助10
1秒前
1秒前
漂亮的凛完成签到,获得积分10
2秒前
天天快乐应助7890733采纳,获得10
2秒前
卡冈图雅完成签到,获得积分10
2秒前
2秒前
孟雯毓完成签到,获得积分10
2秒前
3秒前
jiao发布了新的文献求助10
3秒前
3秒前
3秒前
莫妮卡卡发布了新的文献求助10
5秒前
5秒前
conjee完成签到,获得积分10
6秒前
6秒前
水鱼发布了新的文献求助10
6秒前
OFish发布了新的文献求助10
7秒前
7秒前
顺顺尼完成签到,获得积分10
7秒前
甜甜灵槐发布了新的文献求助10
8秒前
开心的傲安完成签到,获得积分10
10秒前
任性茉莉发布了新的文献求助10
10秒前
10秒前
10秒前
bkagyin应助Deannn778采纳,获得10
11秒前
ZN发布了新的文献求助10
11秒前
关于我完成签到,获得积分10
12秒前
李健应助OFish采纳,获得10
12秒前
13秒前
ding应助寂寞的故事采纳,获得30
13秒前
13秒前
14秒前
陈末应助真实的咖啡采纳,获得10
14秒前
14秒前
简单玉米完成签到,获得积分10
14秒前
情怀应助berg采纳,获得10
15秒前
Mulin完成签到,获得积分10
16秒前
sapioe发布了新的文献求助10
16秒前
ding应助李昕123采纳,获得20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430904
求助须知:如何正确求助?哪些是违规求助? 4543966
关于积分的说明 14190032
捐赠科研通 4462380
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437982
关于科研通互助平台的介绍 1414566