Automatic echocardiographic evaluation of the probability of pulmonary hypertension using machine learning

医学 胸骨旁线 肺动脉高压 接收机工作特性 机器学习 人工智能 肺动脉 曲线下面积 曲线下面积 队列 心导管术 心脏病学 内科学 放射科 计算机科学 药代动力学
作者
Zuwei Liao,Kai-Kai Liu,Shangwei Ding,Qin‐Hua Zhao,Yong Jiang,Lan Wang,Taoran Huang,Lifang Yang,Dongling Luo,Erlei Zhang,Yu Zhang,Caojin Zhang,Xiaowei Xu,Hongwen Fei
出处
期刊:Pulmonary circulation [SAGE Publishing]
卷期号:13 (3) 被引量:4
标识
DOI:10.1002/pul2.12272
摘要

Echocardiography, a simple and noninvasive tool, is the first choice for screening pulmonary hypertension (PH). However, accurate assessment of PH, incorporating both the pulmonary artery pressures and additional signs for PH remained unsatisfied. Thus, this study aimed to develop a machine learning (ML) model that can automatically evaluate the probability of PH. This cohort included data from 346 (275 for training set and internal validation set and 71 for external validation set) patients with suspected PH patients and receiving right heart catheterization. Echocardiographic images on parasternal short axis-papillary muscle level (PSAX-PML) view from all patients were collected, labeled, and preprocessed. Local features from each image were extracted and subsequently integrated to build a ML model. By adjusting the parameters of the model, the model with the best prediction effect is finally constructed. We used receiver-operating characteristic analysis to evaluate model performance and compared the ML model with the traditional methods. The accuracy of the ML model for diagnosis of PH was significantly higher than the traditional method (0.945 vs. 0.892, p = 0.027 [area under the curve [AUC]]). Similar findings were observed in subgroup analysis and validated in the external validation set (AUC = 0.950 [95% CI: 0.897-1.000]). In summary, ML methods could automatically extract features from traditional PSAX-PML view and automatically assess the probability of PH, which were found to outperform traditional echocardiographic assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
urochen完成签到 ,获得积分10
刚刚
刚刚
子叶完成签到,获得积分10
刚刚
科研通AI5应助S8采纳,获得10
1秒前
自信的德天完成签到,获得积分10
1秒前
animenz完成签到,获得积分10
2秒前
于佳卉发布了新的文献求助20
2秒前
科研通AI5应助helena333采纳,获得10
3秒前
黄林豪关注了科研通微信公众号
3秒前
俭朴的皮卡丘完成签到 ,获得积分10
3秒前
橙以澄发布了新的文献求助10
5秒前
5秒前
5秒前
偷乐完成签到,获得积分10
5秒前
源远流长完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
eueurhj完成签到,获得积分10
6秒前
万能图书馆应助亦犹未进采纳,获得10
6秒前
彭于晏应助卡比兽采纳,获得10
7秒前
lulu917完成签到,获得积分20
7秒前
wzy完成签到,获得积分10
7秒前
马楼完成签到,获得积分10
7秒前
7秒前
难过的翎发布了新的文献求助10
7秒前
Ruyii完成签到,获得积分10
8秒前
科目三应助泽锦臻采纳,获得10
8秒前
吴q完成签到,获得积分10
8秒前
冰糖小葫芦完成签到,获得积分10
8秒前
8秒前
8秒前
善学以致用应助sddd采纳,获得20
8秒前
思源应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得20
9秒前
传奇3应助迅速的念芹采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096