Automatic echocardiographic evaluation of the probability of pulmonary hypertension using machine learning

医学 胸骨旁线 肺动脉高压 接收机工作特性 机器学习 人工智能 肺动脉 曲线下面积 曲线下面积 队列 心导管术 心脏病学 内科学 放射科 计算机科学 药代动力学
作者
Zuwei Liao,Kai-Kai Liu,Shangwei Ding,Qin‐Hua Zhao,Yong Jiang,Lan Wang,Taoran Huang,Lifang Yang,Dongling Luo,Erlei Zhang,Yu Zhang,Caojin Zhang,Xiaowei Xu,Hongwen Fei
出处
期刊:Pulmonary circulation [SAGE Publishing]
卷期号:13 (3) 被引量:4
标识
DOI:10.1002/pul2.12272
摘要

Echocardiography, a simple and noninvasive tool, is the first choice for screening pulmonary hypertension (PH). However, accurate assessment of PH, incorporating both the pulmonary artery pressures and additional signs for PH remained unsatisfied. Thus, this study aimed to develop a machine learning (ML) model that can automatically evaluate the probability of PH. This cohort included data from 346 (275 for training set and internal validation set and 71 for external validation set) patients with suspected PH patients and receiving right heart catheterization. Echocardiographic images on parasternal short axis-papillary muscle level (PSAX-PML) view from all patients were collected, labeled, and preprocessed. Local features from each image were extracted and subsequently integrated to build a ML model. By adjusting the parameters of the model, the model with the best prediction effect is finally constructed. We used receiver-operating characteristic analysis to evaluate model performance and compared the ML model with the traditional methods. The accuracy of the ML model for diagnosis of PH was significantly higher than the traditional method (0.945 vs. 0.892, p = 0.027 [area under the curve [AUC]]). Similar findings were observed in subgroup analysis and validated in the external validation set (AUC = 0.950 [95% CI: 0.897-1.000]). In summary, ML methods could automatically extract features from traditional PSAX-PML view and automatically assess the probability of PH, which were found to outperform traditional echocardiographic assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
professorleo123完成签到,获得积分10
刚刚
yzhilson完成签到 ,获得积分0
刚刚
lhui完成签到,获得积分10
1秒前
时尚红酒完成签到,获得积分10
1秒前
七少爷完成签到,获得积分10
2秒前
Yang发布了新的文献求助10
2秒前
超帅傲白发布了新的文献求助10
2秒前
小张完成签到 ,获得积分10
3秒前
李健应助诸葛烤鸭采纳,获得10
3秒前
虎虎生威完成签到,获得积分10
4秒前
zorra完成签到,获得积分10
4秒前
4秒前
xhuryts完成签到,获得积分10
4秒前
可乐全糖微冰完成签到,获得积分10
4秒前
5秒前
5秒前
lee完成签到,获得积分10
5秒前
昊天月完成签到,获得积分10
5秒前
clcl完成签到,获得积分10
5秒前
大棒槌完成签到,获得积分10
6秒前
Ting完成签到,获得积分10
6秒前
6秒前
Tessa完成签到,获得积分10
6秒前
谢言一完成签到,获得积分10
7秒前
zhangxin发布了新的文献求助10
7秒前
满意的烨磊完成签到,获得积分10
7秒前
顺心紫南完成签到,获得积分10
8秒前
blueboom完成签到,获得积分10
8秒前
8秒前
仿生人完成签到,获得积分10
9秒前
9秒前
李秋静完成签到,获得积分10
9秒前
小刚完成签到,获得积分0
9秒前
鲤鱼平安完成签到,获得积分10
9秒前
小蒋完成签到 ,获得积分10
9秒前
大蜥蜴完成签到,获得积分10
10秒前
10秒前
简单的山晴完成签到,获得积分10
10秒前
思源应助守护采纳,获得10
10秒前
缥缈的断天完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5009227
求助须知:如何正确求助?哪些是违规求助? 4251543
关于积分的说明 13245299
捐赠科研通 4052705
什么是DOI,文献DOI怎么找? 2217006
邀请新用户注册赠送积分活动 1226763
关于科研通互助平台的介绍 1148638