Automatic echocardiographic evaluation of the probability of pulmonary hypertension using machine learning

医学 胸骨旁线 肺动脉高压 接收机工作特性 机器学习 人工智能 肺动脉 曲线下面积 曲线下面积 队列 心导管术 心脏病学 内科学 放射科 计算机科学 药代动力学
作者
Zuwei Liao,Kai-Kai Liu,Shangwei Ding,Qin‐Hua Zhao,Yong Jiang,Lan Wang,Taoran Huang,Lifang Yang,Dongling Luo,Erlei Zhang,Yu Zhang,Caojin Zhang,Xiaowei Xu,Hongwen Fei
出处
期刊:Pulmonary circulation [SAGE Publishing]
卷期号:13 (3) 被引量:4
标识
DOI:10.1002/pul2.12272
摘要

Echocardiography, a simple and noninvasive tool, is the first choice for screening pulmonary hypertension (PH). However, accurate assessment of PH, incorporating both the pulmonary artery pressures and additional signs for PH remained unsatisfied. Thus, this study aimed to develop a machine learning (ML) model that can automatically evaluate the probability of PH. This cohort included data from 346 (275 for training set and internal validation set and 71 for external validation set) patients with suspected PH patients and receiving right heart catheterization. Echocardiographic images on parasternal short axis-papillary muscle level (PSAX-PML) view from all patients were collected, labeled, and preprocessed. Local features from each image were extracted and subsequently integrated to build a ML model. By adjusting the parameters of the model, the model with the best prediction effect is finally constructed. We used receiver-operating characteristic analysis to evaluate model performance and compared the ML model with the traditional methods. The accuracy of the ML model for diagnosis of PH was significantly higher than the traditional method (0.945 vs. 0.892, p = 0.027 [area under the curve [AUC]]). Similar findings were observed in subgroup analysis and validated in the external validation set (AUC = 0.950 [95% CI: 0.897-1.000]). In summary, ML methods could automatically extract features from traditional PSAX-PML view and automatically assess the probability of PH, which were found to outperform traditional echocardiographic assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吴同志发布了新的文献求助10
1秒前
3秒前
废话鱼完成签到 ,获得积分10
3秒前
4秒前
du关闭了du文献求助
5秒前
量子星尘发布了新的文献求助10
6秒前
博修发布了新的文献求助10
6秒前
jiachun完成签到,获得积分10
6秒前
Jasper应助单薄的南蕾采纳,获得10
7秒前
10秒前
10秒前
11秒前
11秒前
神奇宝贝完成签到,获得积分10
11秒前
咔什么嚓完成签到,获得积分10
13秒前
13秒前
鲑鱼完成签到 ,获得积分10
14秒前
余一台发布了新的文献求助10
17秒前
在水一方应助zhangjian19237采纳,获得10
18秒前
梧桐发布了新的文献求助10
18秒前
19秒前
深林盛世完成签到,获得积分10
20秒前
所所应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得30
21秒前
21秒前
21秒前
21秒前
lamer完成签到,获得积分10
24秒前
余一台完成签到,获得积分10
24秒前
情怀应助新新新子采纳,获得10
24秒前
在水一方应助卓聪健采纳,获得10
26秒前
bwl发布了新的文献求助10
27秒前
bkagyin应助高美美采纳,获得10
27秒前
29秒前
29秒前
lss发布了新的文献求助50
33秒前
CHEN完成签到 ,获得积分10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150