Automatic echocardiographic evaluation of the probability of pulmonary hypertension using machine learning

医学 胸骨旁线 肺动脉高压 接收机工作特性 机器学习 人工智能 肺动脉 曲线下面积 曲线下面积 队列 心导管术 心脏病学 内科学 放射科 计算机科学 药代动力学
作者
Zuwei Liao,Kai-Kai Liu,Shangwei Ding,Qin‐Hua Zhao,Yong Jiang,Lan Wang,Taoran Huang,Lifang Yang,Dongling Luo,Erlei Zhang,Yu Zhang,Caojin Zhang,Xiaowei Xu,Hongwen Fei
出处
期刊:Pulmonary circulation [Wiley]
卷期号:13 (3) 被引量:4
标识
DOI:10.1002/pul2.12272
摘要

Echocardiography, a simple and noninvasive tool, is the first choice for screening pulmonary hypertension (PH). However, accurate assessment of PH, incorporating both the pulmonary artery pressures and additional signs for PH remained unsatisfied. Thus, this study aimed to develop a machine learning (ML) model that can automatically evaluate the probability of PH. This cohort included data from 346 (275 for training set and internal validation set and 71 for external validation set) patients with suspected PH patients and receiving right heart catheterization. Echocardiographic images on parasternal short axis-papillary muscle level (PSAX-PML) view from all patients were collected, labeled, and preprocessed. Local features from each image were extracted and subsequently integrated to build a ML model. By adjusting the parameters of the model, the model with the best prediction effect is finally constructed. We used receiver-operating characteristic analysis to evaluate model performance and compared the ML model with the traditional methods. The accuracy of the ML model for diagnosis of PH was significantly higher than the traditional method (0.945 vs. 0.892, p = 0.027 [area under the curve [AUC]]). Similar findings were observed in subgroup analysis and validated in the external validation set (AUC = 0.950 [95% CI: 0.897-1.000]). In summary, ML methods could automatically extract features from traditional PSAX-PML view and automatically assess the probability of PH, which were found to outperform traditional echocardiographic assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YHY完成签到,获得积分10
1秒前
科研通AI5应助魏伯安采纳,获得10
1秒前
caoyy发布了新的文献求助10
1秒前
2秒前
3秒前
张喻235532完成签到,获得积分10
4秒前
失眠虔纹发布了新的文献求助10
5秒前
香蕉觅云应助糊涂的小伙采纳,获得10
5秒前
5秒前
sutharsons应助科研通管家采纳,获得200
7秒前
打打应助科研通管家采纳,获得10
7秒前
axin应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
7秒前
李健应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
8秒前
lu应助科研通管家采纳,获得10
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
研友_MLJldZ发布了新的文献求助10
8秒前
wys完成签到 ,获得积分10
9秒前
10秒前
michaelvin完成签到,获得积分10
10秒前
学术大白完成签到 ,获得积分10
13秒前
13秒前
SYT完成签到,获得积分10
14秒前
15秒前
17秒前
17秒前
17秒前
18秒前
18秒前
魏伯安发布了新的文献求助10
18秒前
18秒前
zhouleiwang完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849