湿度
钥匙(锁)
人工神经网络
服装
运动(物理)
计算机科学
模拟
环境科学
人工智能
气象学
计算机安全
地理
考古
作者
Pengpeng Cheng,Jianping Wang,Xianyi Zeng,Pascal Bruniaux,Daoling Chen
出处
期刊:Fibres & Textiles in Eastern Europe
[Index Copernicus International]
日期:2023-09-01
卷期号:31 (3): 1-8
标识
DOI:10.2478/ftee-2023-0021
摘要
Abstract A neural network structure of Long Short Term Memory (LSTM) is proposed which could be used to predict the temperature and humidity of other key parts from the temperature and humidity data of some parts of the human body when wearing tight sportswear, so as to realize the temperature and humidity data prediction of all key points of the human body. The temperature and humidity of different people wearing tights were collected by DHT sensors. The experimental results show that the LSTM neural network structure proposed has higher prediction accuracy than other algorithms, and the model evaluates the feasibility of temperature and humidity data of tights in a state of motion, which facilitates the study of dynamic thermal and humid comfort and reduces the time cost of analyzing the temperature and humidity distribution and changing the law during human movement. It will effectively promote the study of temperature and humidity changes when people wear sports tights, provide theoretical reference for the study of human skin temperature in the field of sports medicine, and provide practical guidance for the application of human skin temperature changes in sports clothing production, diagnosis and prevention of sports injuries.
科研通智能强力驱动
Strongly Powered by AbleSci AI