亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepCIP: A multimodal deep learning method for the prediction of internal ribosome entry sites of circRNAs

内部核糖体进入位点 计算机科学 计算生物学 翻译(生物学) 人工智能 深度学习 核糖体 编码 序列(生物学) 核糖核酸 机器学习 生物 遗传学 信使核糖核酸 基因
作者
Yuxuan Zhou,Jingcheng Wu,Shihao Yao,Yulian Xu,Wenbin Zhao,Yunguang Tong,Zhan Zhou
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107288-107288 被引量:25
标识
DOI:10.1016/j.compbiomed.2023.107288
摘要

Circular RNAs (circRNAs) have been found to have the ability to encode proteins through internal ribosome entry sites (IRESs), which are essential RNA regulatory elements for cap-independent translation. Identification of IRES elements in circRNA is crucial for understanding its function. Previous studies have presented IRES predictors based on machine learning techniques, but they were mainly designed for linear RNA IRES. In this study, we proposed DeepCIP (Deep learning method for CircRNA IRES Prediction), a multimodal deep learning approach that employs both sequence and structural information for circRNA IRES prediction. Our results demonstrate the effectiveness of the sequence and structure models used by DeepCIP in feature extraction and suggest that integrating sequence and structural information efficiently improves the accuracy of prediction. The comparison studies indicate that DeepCIP outperforms other comparative methods on the test set and real circRNA IRES dataset. Furthermore, through the integration of an interpretable analysis mechanism, we elucidate the sequence patterns learned by our model, which align with the previous discovery of motifs that facilitate circRNA translation. Thus, DeepCIP has the potential to enhance the study of the coding potential of circRNAs and contribute to the design of circRNA-based drugs. DeepCIP as a standalone program is freely available at https://github.org/zjupgx/DeepCIP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
22秒前
wyx发布了新的文献求助10
25秒前
yzhilson完成签到 ,获得积分0
38秒前
lyh0408完成签到,获得积分10
57秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
xzlijingjing完成签到 ,获得积分10
2分钟前
江枫渔火完成签到 ,获得积分10
2分钟前
奋进的熊完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
难过的踏歌完成签到,获得积分10
2分钟前
3分钟前
3分钟前
李爱国应助放假了万岁采纳,获得10
3分钟前
3分钟前
烟花应助26采纳,获得10
3分钟前
3分钟前
3分钟前
26发布了新的文献求助10
3分钟前
3分钟前
26完成签到,获得积分10
3分钟前
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
Jayzie完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
orixero应助wyx采纳,获得10
6分钟前
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5455008
求助须知:如何正确求助?哪些是违规求助? 4562247
关于积分的说明 14284991
捐赠科研通 4486147
什么是DOI,文献DOI怎么找? 2457255
邀请新用户注册赠送积分活动 1447868
关于科研通互助平台的介绍 1423094