DeepCIP: A multimodal deep learning method for the prediction of internal ribosome entry sites of circRNAs

内部核糖体进入位点 计算机科学 计算生物学 翻译(生物学) 人工智能 深度学习 核糖体 编码 序列(生物学) 核糖核酸 机器学习 生物 遗传学 信使核糖核酸 基因
作者
Yuxuan Zhou,Jingcheng Wu,Shihao Yao,Yulian Xu,Wenbin Zhao,Yunguang Tong,Zhan Zhou
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107288-107288 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107288
摘要

Circular RNAs (circRNAs) have been found to have the ability to encode proteins through internal ribosome entry sites (IRESs), which are essential RNA regulatory elements for cap-independent translation. Identification of IRES elements in circRNA is crucial for understanding its function. Previous studies have presented IRES predictors based on machine learning techniques, but they were mainly designed for linear RNA IRES. In this study, we proposed DeepCIP (Deep learning method for CircRNA IRES Prediction), a multimodal deep learning approach that employs both sequence and structural information for circRNA IRES prediction. Our results demonstrate the effectiveness of the sequence and structure models used by DeepCIP in feature extraction and suggest that integrating sequence and structural information efficiently improves the accuracy of prediction. The comparison studies indicate that DeepCIP outperforms other comparative methods on the test set and real circRNA IRES dataset. Furthermore, through the integration of an interpretable analysis mechanism, we elucidate the sequence patterns learned by our model, which align with the previous discovery of motifs that facilitate circRNA translation. Thus, DeepCIP has the potential to enhance the study of the coding potential of circRNAs and contribute to the design of circRNA-based drugs. DeepCIP as a standalone program is freely available at https://github.org/zjupgx/DeepCIP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼羊完成签到,获得积分10
1秒前
1秒前
3秒前
xyy001完成签到,获得积分10
7秒前
万能图书馆应助sdl采纳,获得10
7秒前
8秒前
9秒前
SYLH应助Camellia采纳,获得10
10秒前
小张医生完成签到,获得积分10
10秒前
小西完成签到 ,获得积分10
12秒前
Ava应助小陆采纳,获得10
12秒前
华仔应助每天都要开心采纳,获得50
12秒前
试尝胆大应助贪玩发夹采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
####完成签到 ,获得积分10
14秒前
natanan发布了新的文献求助10
15秒前
15秒前
隐形的迎南完成签到,获得积分10
17秒前
Miya发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
21秒前
樊珩发布了新的文献求助10
23秒前
sdl发布了新的文献求助10
24秒前
lele0566发布了新的文献求助10
24秒前
cc完成签到,获得积分20
25秒前
核桃应助每天都要开心采纳,获得10
26秒前
Shelton完成签到,获得积分10
26秒前
情怀应助刘刘采纳,获得10
26秒前
英姑应助矮小的猕猴桃采纳,获得10
29秒前
29秒前
30秒前
葡紫明完成签到 ,获得积分10
30秒前
尊敬兔子完成签到,获得积分10
32秒前
琪琪发布了新的文献求助30
33秒前
zcbb完成签到,获得积分10
33秒前
35秒前
Owen应助余晖霞光采纳,获得10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030