Few-shot Multimodal Sentiment Analysis Based on Multimodal Probabilistic Fusion Prompts

计算机科学 概率逻辑 稳健性(进化) 人工智能 模式 机器学习 多通道交互 情绪分析 人机交互 社会科学 生物化学 化学 社会学 基因
作者
Xiaocui Yang,Shi Feng,Daling Wang,Yifei Zhang,Soujanya Poria
标识
DOI:10.1145/3581783.3612181
摘要

Multimodal sentiment analysis has gained significant attention due to the proliferation of multimodal content on social media. However, existing studies in this area rely heavily on large-scale supervised data, which is time-consuming and labor-intensive to collect. Thus, there is a need to address the challenge of few-shot multimodal sentiment analysis. To tackle this problem, we propose a novel method called Multimodal Probabilistic Fusion Prompts (MultiPoint) that leverages diverse cues from different modalities for multimodal sentiment detection in the few-shot scenario. Specifically, we start by introducing a Consistently Distributed Sampling approach called CDS, which ensures that the few-shot dataset has the same category distribution as the full dataset. Unlike previous approaches primarily using prompts based on the text modality, we design unified multimodal prompts to reduce discrepancies between different modalities and dynamically incorporate multimodal demonstrations into the context of each multimodal instance. To enhance the model's robustness, we introduce a probabilistic fusion method to fuse output predictions from multiple diverse prompts for each input. Our extensive experiments on six datasets demonstrate the effectiveness of our approach. First, our method outperforms strong baselines in the multimodal few-shot setting. Furthermore, under the same amount of data (1% of the full dataset), our CDS-based experimental results significantly outperform those based on previously sampled datasets constructed from the same number of instances of each class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Logan5949完成签到 ,获得积分10
1秒前
搜集达人应助单纯一刀采纳,获得10
1秒前
深情安青应助一杯美事采纳,获得10
2秒前
科研通AI2S应助凉拌折耳根采纳,获得10
3秒前
丘比特应助盼盼采纳,获得10
4秒前
ziyewutong完成签到,获得积分10
7秒前
Owen应助www采纳,获得10
8秒前
科研通AI2S应助浮流少年采纳,获得10
9秒前
Zoeeey完成签到 ,获得积分10
9秒前
pure完成签到 ,获得积分10
11秒前
bkagyin应助maple采纳,获得20
12秒前
稳重的若雁应助布吉岛采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得30
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
rgaerva应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
19秒前
sam应助活力的泥猴桃采纳,获得10
22秒前
22秒前
23秒前
仁爱宛筠完成签到,获得积分10
25秒前
科烟生发布了新的文献求助10
26秒前
28秒前
ZZ完成签到,获得积分10
30秒前
NexusExplorer应助HappyBoy采纳,获得10
31秒前
31秒前
盼盼发布了新的文献求助10
32秒前
dxh发布了新的文献求助10
34秒前
36秒前
36秒前
爆米花应助baolongzhan采纳,获得10
38秒前
dxh完成签到,获得积分10
40秒前
fff完成签到 ,获得积分10
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791216
关于积分的说明 7798259
捐赠科研通 2447643
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626359
版权声明 601194