Few-shot Multimodal Sentiment Analysis Based on Multimodal Probabilistic Fusion Prompts

计算机科学 概率逻辑 稳健性(进化) 人工智能 模式 机器学习 多通道交互 情绪分析 人机交互 社会科学 生物化学 基因 社会学 化学
作者
Xiaocui Yang,Shi Feng,Daling Wang,Yifei Zhang,Soujanya Poria
标识
DOI:10.1145/3581783.3612181
摘要

Multimodal sentiment analysis has gained significant attention due to the proliferation of multimodal content on social media. However, existing studies in this area rely heavily on large-scale supervised data, which is time-consuming and labor-intensive to collect. Thus, there is a need to address the challenge of few-shot multimodal sentiment analysis. To tackle this problem, we propose a novel method called Multimodal Probabilistic Fusion Prompts (MultiPoint) that leverages diverse cues from different modalities for multimodal sentiment detection in the few-shot scenario. Specifically, we start by introducing a Consistently Distributed Sampling approach called CDS, which ensures that the few-shot dataset has the same category distribution as the full dataset. Unlike previous approaches primarily using prompts based on the text modality, we design unified multimodal prompts to reduce discrepancies between different modalities and dynamically incorporate multimodal demonstrations into the context of each multimodal instance. To enhance the model's robustness, we introduce a probabilistic fusion method to fuse output predictions from multiple diverse prompts for each input. Our extensive experiments on six datasets demonstrate the effectiveness of our approach. First, our method outperforms strong baselines in the multimodal few-shot setting. Furthermore, under the same amount of data (1% of the full dataset), our CDS-based experimental results significantly outperform those based on previously sampled datasets constructed from the same number of instances of each class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助xxx采纳,获得10
1秒前
1秒前
gugugaga发布了新的文献求助10
2秒前
2秒前
鱼圆杂铺发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Orange应助魈玖采纳,获得10
4秒前
隐形曼青应助123456采纳,获得10
5秒前
傻傻的小丑孩完成签到 ,获得积分10
5秒前
李健的小迷弟应助lulu1234采纳,获得10
6秒前
开门啊菇凉完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
哈哈的哈哈完成签到,获得积分10
8秒前
8秒前
Una发布了新的文献求助10
8秒前
许菁发布了新的文献求助10
8秒前
9秒前
Darker发布了新的文献求助10
9秒前
紧张的小松鼠完成签到,获得积分10
10秒前
xytyyy发布了新的文献求助10
11秒前
迅速冬天发布了新的文献求助10
11秒前
害怕的丑完成签到 ,获得积分20
11秒前
爱炖鸽子的咕咕完成签到,获得积分10
11秒前
13秒前
13秒前
烤冷面应助戈笙gg采纳,获得10
14秒前
14秒前
15秒前
解语花发布了新的文献求助10
15秒前
浮游应助魈玖采纳,获得10
15秒前
15秒前
拉姆发布了新的文献求助10
16秒前
Bash发布了新的文献求助10
16秒前
17秒前
hit10024完成签到,获得积分10
19秒前
小洁完成签到 ,获得积分10
19秒前
迅速冬天完成签到,获得积分10
20秒前
Orange应助魈玖采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069974
求助须知:如何正确求助?哪些是违规求助? 4291171
关于积分的说明 13369782
捐赠科研通 4111427
什么是DOI,文献DOI怎么找? 2251490
邀请新用户注册赠送积分活动 1256663
关于科研通互助平台的介绍 1189212