Liquid–Liquid Phase Separation at Double Emulsion Interfaces: Equilibrium Structures and Dynamic Pathways

相图 聚结(物理) 乳状液 杰纳斯 表面张力 化学物理 液态液体 相(物质) 聚合物 动态平衡 化学 材料科学 化学工程 纳米技术 热力学 色谱法 物理化学 有机化学 物理 天体生物学 工程类
作者
Yue Zhao,Baihui Li,Xiaotong Chen,Yue Zhou,Ting Song,Weichao Shi
出处
期刊:Macromolecules [American Chemical Society]
卷期号:56 (21): 8834-8844 被引量:1
标识
DOI:10.1021/acs.macromol.3c01157
摘要

Liquid–liquid phase separation at complex interfaces plays an important role in biological systems and material applications. A key question is to understand the effect of interfacial properties on the thermodynamics and dynamic pathways of liquid–liquid phase separation, which remains to be clarified. Here, we create double emulsion droplets and study the phase separation of immiscible polymer solutions at the water/oil/water interface. Various block copolymers are used to modulate the interfacial properties, which make phase separation configurable to eyeball-like, Janus double-shell, and inverse eyeball-like structures. The eyeball-like droplets are obtained through a one-step coalescence or spreading process, while the Janus double-shell and inverse eyeball-like structures are created by a two-step “coalescence-and-inverse spreading” or “spreading-and-inverse spreading” process. We reveal that the selection of a dynamic pathway is dependent on the polymer composition and interfacial properties. However, the equilibrium structures of phase separation are determined only by the interfacial properties of coexisting phases. Such phase behaviors are unique in contrast with the polymer phase separation on plane substrates and yet ubiquitous at double emulsion interfaces in more than ten different systems. The equilibrium structures and dynamic pathways are quantitatively explained by our analysis using normalized interfacial tension, which unifies all data on an equilibrium morphology diagram and a temporal evolution diagram, respectively. This study provides a method to understand phase separation behaviors at double emulsion interfaces and is also helpful for regulating particle configurations and membrane structures at liquid–liquid interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助强健的月饼采纳,获得30
1秒前
陶1122完成签到,获得积分10
1秒前
1秒前
changaipei完成签到,获得积分10
2秒前
2秒前
李子完成签到,获得积分10
2秒前
3秒前
3秒前
共享精神应助YAOYAO采纳,获得10
3秒前
qp完成签到,获得积分10
3秒前
4秒前
咕噜咕噜完成签到,获得积分20
5秒前
HEIKU应助kiska采纳,获得10
5秒前
5秒前
单薄茗完成签到,获得积分10
5秒前
5秒前
刘鹏宇完成签到,获得积分10
6秒前
danrushui777完成签到,获得积分10
6秒前
慕青应助李子采纳,获得10
6秒前
无心的怜烟完成签到,获得积分10
6秒前
拼搏的沅完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
11111111111完成签到,获得积分10
7秒前
清辉月凝发布了新的文献求助10
7秒前
天天快乐应助无不破哉采纳,获得10
7秒前
夏末完成签到,获得积分20
7秒前
科目三应助zzz采纳,获得10
8秒前
黄超完成签到,获得积分10
8秒前
Ava应助小宇采纳,获得10
8秒前
柳七完成签到,获得积分10
8秒前
咕噜咕噜发布了新的文献求助10
8秒前
开心榴莲大王完成签到 ,获得积分10
9秒前
隐形冷亦完成签到,获得积分10
9秒前
9秒前
9秒前
乐小佳发布了新的文献求助30
9秒前
9秒前
咕噜噜完成签到 ,获得积分10
9秒前
慈祥的花瓣完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678