Flexible Gaussian Accelerated Molecular Dynamics to Enhance Biological Sampling

计算机科学 分子动力学 最大值和最小值 先验与后验 高斯分布 采样(信号处理) Boosting(机器学习) 人工智能 化学 计算化学 数学 数学分析 哲学 认识论 滤波器(信号处理) 计算机视觉
作者
Oriol Gracia Carmona,Chris Oostenbrink
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (18): 6521-6531 被引量:3
标识
DOI:10.1021/acs.jctc.3c00619
摘要

Molecular dynamics simulations often struggle to obtain sufficient sampling to study complex molecular events due to high energy barriers separating the minima of interest. Multiple enhanced sampling techniques have been developed and improved over the years to tackle this issue. Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that works by adding a biasing potential, lifting the energy landscape up, and decreasing the height of its barriers. GaMD allows one to increase the sampling of events of interest without the need of a priori knowledge of the system or the relevant coordinates. All required acceleration parameters can be obtained from a previous search run. Upon its development, several improvements for the methodology have been proposed, among them selective GaMD in which the boosting potential is selectively applied to the region of interest. There are currently four selective GaMD methods that have shown promising results. However, all of these methods are constrained on the number, location, and scenarios in which this selective boosting potential can be applied to ligands, peptides, or protein–protein interactions. In this work, we showcase a GROMOS implementation of the GaMD methodology with a fully flexible selective GaMD approach that allows the user to define, in a straightforward way, multiple boosting potentials for as many regions as desired. We show and analyze the advantages of this flexible selective approach on two previously used test systems, the alanine dipeptide and the chignolin peptide, and extend these examples to study its applicability and potential to study conformational changes of glycans and glycosylated proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助我又不乱来采纳,获得10
1秒前
370086320完成签到,获得积分10
1秒前
jicm发布了新的文献求助10
1秒前
顾矜应助西子阳采纳,获得10
3秒前
无花果应助花成花采纳,获得10
6秒前
6秒前
夏花发布了新的文献求助10
6秒前
李爱国应助MOMO采纳,获得10
7秒前
搜集达人应助健壮的诗槐采纳,获得10
7秒前
8秒前
ccc关注了科研通微信公众号
8秒前
快乐游轮完成签到 ,获得积分10
9秒前
9秒前
9秒前
隐形曼青应助练习者采纳,获得10
9秒前
VDC应助高高的不悔采纳,获得30
12秒前
13秒前
博雅雅雅雅雅完成签到,获得积分10
13秒前
13秒前
14秒前
Nicheng发布了新的文献求助10
14秒前
14秒前
15秒前
zx9290发布了新的文献求助10
15秒前
15秒前
斯文败类应助hashtag采纳,获得30
15秒前
15秒前
星辰大海应助橘子采纳,获得10
16秒前
18秒前
ccc发布了新的文献求助10
18秒前
spw关注了科研通微信公众号
18秒前
爱吃食物的女孩完成签到 ,获得积分10
18秒前
科目三应助LamChem采纳,获得10
18秒前
jingyan完成签到,获得积分10
19秒前
19秒前
19秒前
Ava应助西子阳采纳,获得10
19秒前
机灵的冰夏完成签到,获得积分10
20秒前
来了来了发布了新的文献求助10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748536
求助须知:如何正确求助?哪些是违规求助? 3291591
关于积分的说明 10073642
捐赠科研通 3007395
什么是DOI,文献DOI怎么找? 1651600
邀请新用户注册赠送积分活动 786523
科研通“疑难数据库(出版商)”最低求助积分说明 751765