A Spatiotemporal Fusion Autoencoder-Based Health Indicator Automatic Construction Method for Rotating Machinery Considering Vibration Signal Expression

减速器 计算机科学 自编码 卷积(计算机科学) 人工智能 约束(计算机辅助设计) 模式识别(心理学) 断层(地质) 卷积神经网络 振动 数据挖掘 深度学习 机器学习 人工神经网络 工程类 土木工程 地震学 地质学 物理 量子力学 机械工程
作者
Duan Yong,Xiangang Cao,Jianhua Zhao,Man Li,Xin Yang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (20): 24822-24838
标识
DOI:10.1109/jsen.2023.3309013
摘要

Rotating machinery is widely applied in various industries, and its health indicator (HI) construction is significant in the data-driven status assessment and remaining useful life (RUL) prediction; however, most existing HI construction methods adopt manual features and simple fusion models, which are hard to detect early fault points and quantify degradation trends due to insufficient feature completeness and poor nonlinear characterization. To overcome the mentioned issues, this article proposes a novel integrated HI automatic construction method by coupling multimode samples of vibration signals. To construct the unsupervised HI automatically, a deep spatiotemporal fusion autoencoder network (MSCLACAE) is developed by integrating multiscale convolution (MSCNN), convolutional long short-term memory network (ConvLSTM), and attention mechanism (AM). On this basis, a quadratic function-based shape constraint is introduced to improve the performance of HI constructed by the MSCLACAE network. The effectiveness of the proposed method is verified by the standard bearing dataset from Xi’an Jiaotong University, the average comprehensive score under different bearings is 0.7327, which is 0.1835 higher than other methods on average; moreover, the proposed method is also tested by the reducer platform, and the comprehensive score is 0.9144, which is increased by 0.2712 averagely compared with different methods; furthermore, the experimental results verify that MSCLACAE not only can find early degradation points or state degradation points earlier but can also predict the RUL with lower error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
晚风发布了新的文献求助100
1秒前
ying完成签到,获得积分10
1秒前
爆米花应助康帅傅采纳,获得10
2秒前
2秒前
SciGPT应助纯真的雁山采纳,获得10
2秒前
2秒前
笨笨芯完成签到,获得积分10
2秒前
gf发布了新的文献求助10
2秒前
科研通AI5应助king采纳,获得10
2秒前
2秒前
allenice完成签到,获得积分0
3秒前
3秒前
wy.he应助七月流火采纳,获得60
3秒前
3秒前
慕青应助leng采纳,获得10
4秒前
4秒前
rrjl完成签到,获得积分10
4秒前
4秒前
4秒前
不安采文完成签到,获得积分10
4秒前
drDeng完成签到,获得积分10
5秒前
北沐城歌应助孤独半青采纳,获得10
5秒前
5秒前
cssfsa完成签到,获得积分10
5秒前
5秒前
笔画完成签到,获得积分10
6秒前
凡人完成签到,获得积分10
6秒前
keyan完成签到,获得积分10
6秒前
研友_5ZlN6L发布了新的文献求助10
6秒前
呆萌问丝发布了新的文献求助10
6秒前
欧哈纳发布了新的文献求助10
6秒前
深情安青应助xiaoziyi666采纳,获得10
7秒前
忧郁的涵雁完成签到 ,获得积分10
7秒前
邵丹发布了新的文献求助10
7秒前
摸鱼鹅完成签到,获得积分10
8秒前
大个应助春樹暮雲采纳,获得10
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4890960
求助须知:如何正确求助?哪些是违规求助? 4174608
关于积分的说明 12956124
捐赠科研通 3936644
什么是DOI,文献DOI怎么找? 2159757
邀请新用户注册赠送积分活动 1178149
关于科研通互助平台的介绍 1083632