A Spatiotemporal Fusion Autoencoder-Based Health Indicator Automatic Construction Method for Rotating Machinery Considering Vibration Signal Expression

减速器 计算机科学 自编码 卷积(计算机科学) 人工智能 约束(计算机辅助设计) 模式识别(心理学) 断层(地质) 卷积神经网络 振动 数据挖掘 深度学习 机器学习 人工神经网络 工程类 土木工程 地震学 地质学 物理 量子力学 机械工程
作者
Duan Yong,Xiangang Cao,Jianhua Zhao,Man Li,Xin Yang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (20): 24822-24838
标识
DOI:10.1109/jsen.2023.3309013
摘要

Rotating machinery is widely applied in various industries, and its health indicator (HI) construction is significant in the data-driven status assessment and remaining useful life (RUL) prediction; however, most existing HI construction methods adopt manual features and simple fusion models, which are hard to detect early fault points and quantify degradation trends due to insufficient feature completeness and poor nonlinear characterization. To overcome the mentioned issues, this article proposes a novel integrated HI automatic construction method by coupling multimode samples of vibration signals. To construct the unsupervised HI automatically, a deep spatiotemporal fusion autoencoder network (MSCLACAE) is developed by integrating multiscale convolution (MSCNN), convolutional long short-term memory network (ConvLSTM), and attention mechanism (AM). On this basis, a quadratic function-based shape constraint is introduced to improve the performance of HI constructed by the MSCLACAE network. The effectiveness of the proposed method is verified by the standard bearing dataset from Xi’an Jiaotong University, the average comprehensive score under different bearings is 0.7327, which is 0.1835 higher than other methods on average; moreover, the proposed method is also tested by the reducer platform, and the comprehensive score is 0.9144, which is increased by 0.2712 averagely compared with different methods; furthermore, the experimental results verify that MSCLACAE not only can find early degradation points or state degradation points earlier but can also predict the RUL with lower error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hilm应助啦啦啦采纳,获得10
1秒前
小马发布了新的文献求助30
1秒前
hilm应助啦啦啦采纳,获得10
1秒前
2秒前
丘比特应助keyanqianjin采纳,获得10
2秒前
CodeCraft应助wangg采纳,获得10
2秒前
大豆终结者完成签到,获得积分10
2秒前
nieyaochi发布了新的文献求助10
3秒前
3秒前
桐桐应助哄哄采纳,获得10
3秒前
Yummy发布了新的文献求助10
5秒前
xxfsx应助阿楚采纳,获得10
5秒前
5秒前
5秒前
6秒前
张宁波完成签到,获得积分0
7秒前
桃木发布了新的文献求助20
7秒前
无极微光应助wjw采纳,获得10
7秒前
科研通AI6应助gzmejiji采纳,获得10
7秒前
susu发布了新的文献求助30
7秒前
Vincent完成签到,获得积分10
9秒前
10秒前
奋斗的怀曼完成签到,获得积分20
12秒前
12秒前
Liu完成签到 ,获得积分10
13秒前
浮游应助hhhhhhan616采纳,获得10
14秒前
14秒前
蛋蛋发布了新的文献求助10
14秒前
Yummy完成签到,获得积分10
15秒前
15秒前
情怀应助小橙子采纳,获得10
16秒前
16秒前
huminjie完成签到 ,获得积分10
16秒前
zhanzhi发布了新的文献求助10
17秒前
18秒前
王木木完成签到,获得积分10
18秒前
Akim应助Shellbeaze采纳,获得10
19秒前
wos完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
星星完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458366
求助须知:如何正确求助?哪些是违规求助? 4564435
关于积分的说明 14295002
捐赠科研通 4489318
什么是DOI,文献DOI怎么找? 2458991
邀请新用户注册赠送积分活动 1448827
关于科研通互助平台的介绍 1424446