A Spatiotemporal Fusion Autoencoder-Based Health Indicator Automatic Construction Method for Rotating Machinery Considering Vibration Signal Expression

减速器 计算机科学 自编码 卷积(计算机科学) 人工智能 约束(计算机辅助设计) 模式识别(心理学) 断层(地质) 卷积神经网络 振动 数据挖掘 深度学习 机器学习 人工神经网络 工程类 土木工程 地震学 地质学 物理 量子力学 机械工程
作者
Duan Yong,Xiangang Cao,Jianhua Zhao,Man Li,Xin Yang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (20): 24822-24838
标识
DOI:10.1109/jsen.2023.3309013
摘要

Rotating machinery is widely applied in various industries, and its health indicator (HI) construction is significant in the data-driven status assessment and remaining useful life (RUL) prediction; however, most existing HI construction methods adopt manual features and simple fusion models, which are hard to detect early fault points and quantify degradation trends due to insufficient feature completeness and poor nonlinear characterization. To overcome the mentioned issues, this article proposes a novel integrated HI automatic construction method by coupling multimode samples of vibration signals. To construct the unsupervised HI automatically, a deep spatiotemporal fusion autoencoder network (MSCLACAE) is developed by integrating multiscale convolution (MSCNN), convolutional long short-term memory network (ConvLSTM), and attention mechanism (AM). On this basis, a quadratic function-based shape constraint is introduced to improve the performance of HI constructed by the MSCLACAE network. The effectiveness of the proposed method is verified by the standard bearing dataset from Xi’an Jiaotong University, the average comprehensive score under different bearings is 0.7327, which is 0.1835 higher than other methods on average; moreover, the proposed method is also tested by the reducer platform, and the comprehensive score is 0.9144, which is increased by 0.2712 averagely compared with different methods; furthermore, the experimental results verify that MSCLACAE not only can find early degradation points or state degradation points earlier but can also predict the RUL with lower error.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
拉不不发布了新的文献求助10
1秒前
1秒前
1秒前
孙非发布了新的文献求助10
2秒前
李健应助Gonna采纳,获得10
2秒前
orixero应助kiwi采纳,获得10
3秒前
火山蜗牛发布了新的文献求助10
3秒前
慕青应助整齐的小鸽子采纳,获得10
3秒前
3秒前
慕青应助石头采纳,获得10
3秒前
3秒前
4秒前
小超发布了新的文献求助10
4秒前
sunyanghu369发布了新的文献求助10
4秒前
摇粒绒发布了新的文献求助10
5秒前
不器发布了新的文献求助50
5秒前
皇甫成发布了新的文献求助10
5秒前
汉堡包应助2号采纳,获得10
5秒前
杜11完成签到,获得积分10
5秒前
leibingzhuyu完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
繁星jia完成签到 ,获得积分10
7秒前
7秒前
7秒前
FashionBoy应助Jabowoo采纳,获得10
8秒前
香蕉觅云应助彭仲诚采纳,获得10
8秒前
JamesPei应助dagongren采纳,获得10
8秒前
9秒前
抽屉里的猫完成签到,获得积分10
9秒前
yy111发布了新的文献求助100
9秒前
李健的小迷弟应助aaa采纳,获得10
10秒前
lian发布了新的文献求助10
10秒前
你好完成签到,获得积分10
10秒前
NB完成签到,获得积分10
10秒前
10秒前
Yvonne完成签到,获得积分10
11秒前
sdkumamon发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919