A Spatiotemporal Fusion Autoencoder-Based Health Indicator Automatic Construction Method for Rotating Machinery Considering Vibration Signal Expression

减速器 计算机科学 自编码 卷积(计算机科学) 人工智能 约束(计算机辅助设计) 模式识别(心理学) 断层(地质) 卷积神经网络 振动 数据挖掘 深度学习 机器学习 人工神经网络 工程类 土木工程 地震学 地质学 物理 量子力学 机械工程
作者
Duan Yong,Xiangang Cao,Jianhua Zhao,Man Li,Xin Yang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (20): 24822-24838
标识
DOI:10.1109/jsen.2023.3309013
摘要

Rotating machinery is widely applied in various industries, and its health indicator (HI) construction is significant in the data-driven status assessment and remaining useful life (RUL) prediction; however, most existing HI construction methods adopt manual features and simple fusion models, which are hard to detect early fault points and quantify degradation trends due to insufficient feature completeness and poor nonlinear characterization. To overcome the mentioned issues, this article proposes a novel integrated HI automatic construction method by coupling multimode samples of vibration signals. To construct the unsupervised HI automatically, a deep spatiotemporal fusion autoencoder network (MSCLACAE) is developed by integrating multiscale convolution (MSCNN), convolutional long short-term memory network (ConvLSTM), and attention mechanism (AM). On this basis, a quadratic function-based shape constraint is introduced to improve the performance of HI constructed by the MSCLACAE network. The effectiveness of the proposed method is verified by the standard bearing dataset from Xi’an Jiaotong University, the average comprehensive score under different bearings is 0.7327, which is 0.1835 higher than other methods on average; moreover, the proposed method is also tested by the reducer platform, and the comprehensive score is 0.9144, which is increased by 0.2712 averagely compared with different methods; furthermore, the experimental results verify that MSCLACAE not only can find early degradation points or state degradation points earlier but can also predict the RUL with lower error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素访旋完成签到,获得积分10
刚刚
小丸子完成签到 ,获得积分10
刚刚
张喻235532发布了新的文献求助20
1秒前
1秒前
斯文败类应助小Q啊啾采纳,获得10
2秒前
4秒前
朴素访旋发布了新的文献求助10
4秒前
ll关闭了ll文献求助
6秒前
keyansci123完成签到,获得积分10
7秒前
鱼头星星kk完成签到,获得积分10
8秒前
8秒前
vovoking完成签到 ,获得积分10
8秒前
9秒前
科研通AI2S应助李大壮采纳,获得10
9秒前
紧张的蝴蝶完成签到 ,获得积分10
9秒前
Lucas应助fwt采纳,获得10
10秒前
痴痴的噜完成签到,获得积分10
10秒前
嗖嗖完成签到,获得积分10
10秒前
11秒前
苏苏苏完成签到,获得积分10
12秒前
领导范儿应助洛水伊南采纳,获得10
13秒前
13秒前
XLXY发布了新的文献求助10
14秒前
17秒前
勤劳茗完成签到,获得积分20
17秒前
白菜发布了新的文献求助10
17秒前
19秒前
Zeal发布了新的文献求助10
20秒前
Lucas应助iljm采纳,获得10
20秒前
李爱国应助JL采纳,获得10
21秒前
liwei发布了新的文献求助20
21秒前
言余应助虞无声采纳,获得50
21秒前
22秒前
zhenliu完成签到 ,获得积分10
23秒前
23秒前
奋斗友儿发布了新的文献求助10
23秒前
23秒前
竹筏过海应助勤劳茗采纳,获得30
24秒前
共享精神应助董雪采纳,获得10
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143538
求助须知:如何正确求助?哪些是违规求助? 2794891
关于积分的说明 7812770
捐赠科研通 2451061
什么是DOI,文献DOI怎么找? 1304203
科研通“疑难数据库(出版商)”最低求助积分说明 627207
版权声明 601386