Design and experiment of a binocular vision-based canopy volume extraction system for precision pesticide application by UAVs

天蓬 激光雷达 测距 遥感 环境科学 体积热力学 准确度和精密度 计算机科学 计算机视觉 人工智能 数学 地理 统计 物理 考古 电信 量子力学
作者
Ruirui Zhang,Shi Lian,Longlong Li,Linhuan Zhang,C Zhang,Liping Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108197-108197 被引量:3
标识
DOI:10.1016/j.compag.2023.108197
摘要

When unmanned aerial vehicles (UAVs) are used for orchard chemicals application, accurate measurement of the canopy volume can provide decision support for determining pesticide dosages, flight parameters, and droplet sizes. Using binocular camera ranging, this study presents a novel canopy segmentation algorithm that preprocesses light detection ranging data to extract sub-grid canopy volumes. A binocular vision-based canopy volume extraction system for UAV chemical application was developed. The system utilizes multi-degree-of-freedom adaptive balance technology to ensure that the binocular camera can still vertically detect the canopy even when the flight attitude changes. Performance experiments were conducted using artificial fruit trees with different leaf densities and regular cardboard box as measurement targets. The canopy volume measurements indicate that the new model accurately detects target contours. When flying at 2 m/s, the maximum errors between system-measured and actual volumes were 6.58 and 9.37 % for the rectangular and triangular, respectively. Increasing speeds and attitudes lead to increased errors and measurement variations. However, the position of the system relative to the target does not cause significant differences in results. The maximum measurement errors between system-measured and actual LiDAR values were 6.44 and 9.17 % for high- and low-density canopies, respectively. These results demonstrate that the proposed system has high measurement accuracy and provides a reliable precision UAV pesticide-spraying control system for plant protection based on real-time canopy detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
窦无剑发布了新的文献求助10
刚刚
kk发布了新的文献求助10
刚刚
田様应助louge采纳,获得10
1秒前
0077发布了新的文献求助10
1秒前
Tao完成签到 ,获得积分10
1秒前
林泽玉完成签到,获得积分10
1秒前
2秒前
2秒前
c445507405发布了新的文献求助20
2秒前
2秒前
2秒前
要上岸完成签到,获得积分20
3秒前
123456完成签到,获得积分10
3秒前
深情安青应助安逸采纳,获得10
3秒前
3秒前
听白完成签到 ,获得积分10
3秒前
llq1993发布了新的文献求助10
4秒前
张一一发布了新的文献求助10
4秒前
mzm发布了新的文献求助10
5秒前
lei完成签到,获得积分20
5秒前
Ashan驳回了ding应助
5秒前
乐乐应助松松松采纳,获得30
5秒前
默默安荷完成签到,获得积分10
6秒前
Guapifei完成签到,获得积分20
6秒前
kk完成签到,获得积分10
6秒前
123456发布了新的文献求助10
6秒前
yuanyuan发布了新的文献求助20
7秒前
黄量杰成完成签到,获得积分10
8秒前
科研通AI6应助帝都云采纳,获得10
8秒前
ding应助kaka采纳,获得10
8秒前
8秒前
CJ完成签到,获得积分10
9秒前
汉堡国王完成签到,获得积分10
9秒前
0077完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
L_Gary完成签到 ,获得积分10
10秒前
lbuild完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396737
求助须知:如何正确求助?哪些是违规求助? 4517074
关于积分的说明 14062206
捐赠科研通 4428957
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424617
关于科研通互助平台的介绍 1403657