Design and experiment of a binocular vision-based canopy volume extraction system for precision pesticide application by UAVs

天蓬 激光雷达 测距 遥感 环境科学 体积热力学 准确度和精密度 计算机科学 计算机视觉 人工智能 数学 地理 统计 物理 考古 电信 量子力学
作者
Ruirui Zhang,Shi Lian,Longlong Li,Linhuan Zhang,C Zhang,Liping Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108197-108197 被引量:3
标识
DOI:10.1016/j.compag.2023.108197
摘要

When unmanned aerial vehicles (UAVs) are used for orchard chemicals application, accurate measurement of the canopy volume can provide decision support for determining pesticide dosages, flight parameters, and droplet sizes. Using binocular camera ranging, this study presents a novel canopy segmentation algorithm that preprocesses light detection ranging data to extract sub-grid canopy volumes. A binocular vision-based canopy volume extraction system for UAV chemical application was developed. The system utilizes multi-degree-of-freedom adaptive balance technology to ensure that the binocular camera can still vertically detect the canopy even when the flight attitude changes. Performance experiments were conducted using artificial fruit trees with different leaf densities and regular cardboard box as measurement targets. The canopy volume measurements indicate that the new model accurately detects target contours. When flying at 2 m/s, the maximum errors between system-measured and actual volumes were 6.58 and 9.37 % for the rectangular and triangular, respectively. Increasing speeds and attitudes lead to increased errors and measurement variations. However, the position of the system relative to the target does not cause significant differences in results. The maximum measurement errors between system-measured and actual LiDAR values were 6.44 and 9.17 % for high- and low-density canopies, respectively. These results demonstrate that the proposed system has high measurement accuracy and provides a reliable precision UAV pesticide-spraying control system for plant protection based on real-time canopy detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yggmdggr完成签到,获得积分10
1秒前
GSQ发布了新的文献求助10
1秒前
林兴春完成签到,获得积分20
2秒前
Jackson完成签到,获得积分10
2秒前
2秒前
2秒前
比巴卜完成签到,获得积分10
3秒前
科研通AI5应助榴莲柿子茶采纳,获得10
3秒前
自由马儿发布了新的文献求助10
5秒前
5秒前
比奇堡平平无奇烂虾完成签到,获得积分10
5秒前
Kinkrit发布了新的文献求助10
6秒前
6秒前
6秒前
Jackson发布了新的文献求助10
7秒前
swqswq发布了新的文献求助10
7秒前
宫野珏完成签到,获得积分10
8秒前
搜集达人应助曾经的代曼采纳,获得10
8秒前
8秒前
一只宝贝烊完成签到,获得积分20
9秒前
王明月发布了新的文献求助10
9秒前
renwoxing完成签到,获得积分10
9秒前
烟花应助winkkk采纳,获得30
10秒前
甜甜诗筠发布了新的文献求助10
10秒前
之_ZH完成签到 ,获得积分10
10秒前
rjhgh发布了新的文献求助20
10秒前
Deserts发布了新的文献求助10
10秒前
xyzhang发布了新的文献求助10
10秒前
luckzz完成签到,获得积分10
11秒前
陈敏娇发布了新的文献求助10
11秒前
zj完成签到,获得积分10
12秒前
Roy发布了新的文献求助10
12秒前
12秒前
12秒前
今北完成签到,获得积分10
12秒前
NexusExplorer应助正直惜文采纳,获得10
13秒前
Yue完成签到,获得积分20
13秒前
李海平发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167192
求助须知:如何正确求助?哪些是违规求助? 4359127
关于积分的说明 13572359
捐赠科研通 4205589
什么是DOI,文献DOI怎么找? 2306477
邀请新用户注册赠送积分活动 1306190
关于科研通互助平台的介绍 1252700