Design and experiment of a binocular vision-based canopy volume extraction system for precision pesticide application by UAVs

天蓬 激光雷达 测距 遥感 环境科学 体积热力学 准确度和精密度 计算机科学 计算机视觉 人工智能 数学 地理 统计 电信 物理 考古 量子力学
作者
Ruirui Zhang,Shi Lian,Longlong Li,Linhuan Zhang,C Zhang,Liping Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108197-108197 被引量:3
标识
DOI:10.1016/j.compag.2023.108197
摘要

When unmanned aerial vehicles (UAVs) are used for orchard chemicals application, accurate measurement of the canopy volume can provide decision support for determining pesticide dosages, flight parameters, and droplet sizes. Using binocular camera ranging, this study presents a novel canopy segmentation algorithm that preprocesses light detection ranging data to extract sub-grid canopy volumes. A binocular vision-based canopy volume extraction system for UAV chemical application was developed. The system utilizes multi-degree-of-freedom adaptive balance technology to ensure that the binocular camera can still vertically detect the canopy even when the flight attitude changes. Performance experiments were conducted using artificial fruit trees with different leaf densities and regular cardboard box as measurement targets. The canopy volume measurements indicate that the new model accurately detects target contours. When flying at 2 m/s, the maximum errors between system-measured and actual volumes were 6.58 and 9.37 % for the rectangular and triangular, respectively. Increasing speeds and attitudes lead to increased errors and measurement variations. However, the position of the system relative to the target does not cause significant differences in results. The maximum measurement errors between system-measured and actual LiDAR values were 6.44 and 9.17 % for high- and low-density canopies, respectively. These results demonstrate that the proposed system has high measurement accuracy and provides a reliable precision UAV pesticide-spraying control system for plant protection based on real-time canopy detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
车骋昊发布了新的文献求助10
1秒前
上官若男应助wyj采纳,获得10
1秒前
1秒前
123456完成签到,获得积分20
1秒前
上官若男应助小飞飞采纳,获得10
2秒前
allenice完成签到,获得积分0
2秒前
灵巧夏彤发布了新的文献求助30
2秒前
4秒前
4秒前
VDC发布了新的文献求助10
6秒前
6秒前
加麻加辣加香菜完成签到,获得积分10
8秒前
8秒前
jinxiao发布了新的文献求助10
10秒前
10秒前
小诗发布了新的文献求助10
11秒前
清风明月应助kingmantj采纳,获得10
11秒前
郭濹涵完成签到,获得积分20
12秒前
火星上如花完成签到,获得积分10
12秒前
12秒前
cxy完成签到 ,获得积分10
12秒前
lucky完成签到 ,获得积分10
13秒前
13秒前
13秒前
向上发布了新的文献求助10
13秒前
ZT完成签到,获得积分20
15秒前
方格子完成签到 ,获得积分10
16秒前
醉熏的幻灵完成签到 ,获得积分10
16秒前
Queena发布了新的文献求助10
17秒前
风趣的碧琴完成签到,获得积分10
17秒前
小白菜发布了新的文献求助100
18秒前
浮游应助小巧紊采纳,获得10
20秒前
lmx完成签到,获得积分10
21秒前
生动的保温杯完成签到,获得积分10
22秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
今后应助闪闪采纳,获得10
24秒前
小飞飞完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434440
求助须知:如何正确求助?哪些是违规求助? 4546716
关于积分的说明 14204115
捐赠科研通 4466772
什么是DOI,文献DOI怎么找? 2448303
邀请新用户注册赠送积分活动 1439099
关于科研通互助平台的介绍 1415969