Design and experiment of a binocular vision-based canopy volume extraction system for precision pesticide application by UAVs

天蓬 激光雷达 测距 遥感 环境科学 体积热力学 准确度和精密度 计算机科学 计算机视觉 人工智能 数学 地理 统计 电信 物理 考古 量子力学
作者
Ruirui Zhang,Shi Lian,Longlong Li,Linhuan Zhang,C Zhang,Liping Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108197-108197 被引量:3
标识
DOI:10.1016/j.compag.2023.108197
摘要

When unmanned aerial vehicles (UAVs) are used for orchard chemicals application, accurate measurement of the canopy volume can provide decision support for determining pesticide dosages, flight parameters, and droplet sizes. Using binocular camera ranging, this study presents a novel canopy segmentation algorithm that preprocesses light detection ranging data to extract sub-grid canopy volumes. A binocular vision-based canopy volume extraction system for UAV chemical application was developed. The system utilizes multi-degree-of-freedom adaptive balance technology to ensure that the binocular camera can still vertically detect the canopy even when the flight attitude changes. Performance experiments were conducted using artificial fruit trees with different leaf densities and regular cardboard box as measurement targets. The canopy volume measurements indicate that the new model accurately detects target contours. When flying at 2 m/s, the maximum errors between system-measured and actual volumes were 6.58 and 9.37 % for the rectangular and triangular, respectively. Increasing speeds and attitudes lead to increased errors and measurement variations. However, the position of the system relative to the target does not cause significant differences in results. The maximum measurement errors between system-measured and actual LiDAR values were 6.44 and 9.17 % for high- and low-density canopies, respectively. These results demonstrate that the proposed system has high measurement accuracy and provides a reliable precision UAV pesticide-spraying control system for plant protection based on real-time canopy detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
一点完成签到,获得积分10
1秒前
2秒前
董昌铭发布了新的文献求助10
3秒前
十一号发布了新的文献求助10
3秒前
无名之辈发布了新的文献求助10
3秒前
3秒前
研究僧完成签到,获得积分10
4秒前
杨玉萍完成签到,获得积分10
4秒前
传奇3应助popo采纳,获得10
4秒前
林志坚完成签到 ,获得积分10
4秒前
科研牛马发布了新的文献求助10
4秒前
5秒前
5秒前
在水一方应助蔓越莓麻薯采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
安详靖柏发布了新的文献求助10
6秒前
葫勒个娃完成签到,获得积分10
7秒前
可爱的函函应助默默采纳,获得10
7秒前
7秒前
liu发布了新的文献求助10
8秒前
9秒前
9秒前
Mely0203完成签到,获得积分20
9秒前
10秒前
Omega完成签到,获得积分10
10秒前
科研通AI6应助chenzy采纳,获得10
10秒前
跨材料完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
月亮很亮发布了新的文献求助10
12秒前
小猴子完成签到,获得积分10
12秒前
12秒前
微笑应助繁笙采纳,获得10
12秒前
是玥玥呀发布了新的文献求助10
12秒前
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559