Design and experiment of a binocular vision-based canopy volume extraction system for precision pesticide application by UAVs

天蓬 激光雷达 测距 遥感 环境科学 体积热力学 准确度和精密度 计算机科学 计算机视觉 人工智能 数学 地理 统计 物理 考古 电信 量子力学
作者
Ruirui Zhang,Shi Lian,Longlong Li,Linhuan Zhang,C Zhang,Liping Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108197-108197 被引量:3
标识
DOI:10.1016/j.compag.2023.108197
摘要

When unmanned aerial vehicles (UAVs) are used for orchard chemicals application, accurate measurement of the canopy volume can provide decision support for determining pesticide dosages, flight parameters, and droplet sizes. Using binocular camera ranging, this study presents a novel canopy segmentation algorithm that preprocesses light detection ranging data to extract sub-grid canopy volumes. A binocular vision-based canopy volume extraction system for UAV chemical application was developed. The system utilizes multi-degree-of-freedom adaptive balance technology to ensure that the binocular camera can still vertically detect the canopy even when the flight attitude changes. Performance experiments were conducted using artificial fruit trees with different leaf densities and regular cardboard box as measurement targets. The canopy volume measurements indicate that the new model accurately detects target contours. When flying at 2 m/s, the maximum errors between system-measured and actual volumes were 6.58 and 9.37 % for the rectangular and triangular, respectively. Increasing speeds and attitudes lead to increased errors and measurement variations. However, the position of the system relative to the target does not cause significant differences in results. The maximum measurement errors between system-measured and actual LiDAR values were 6.44 and 9.17 % for high- and low-density canopies, respectively. These results demonstrate that the proposed system has high measurement accuracy and provides a reliable precision UAV pesticide-spraying control system for plant protection based on real-time canopy detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零三零完成签到,获得积分10
1秒前
糖炒栗子完成签到,获得积分10
1秒前
大月儿完成签到 ,获得积分10
2秒前
4秒前
徐佳达完成签到,获得积分10
5秒前
燕荣完成签到 ,获得积分10
6秒前
7秒前
wen完成签到,获得积分10
8秒前
上官若男应助Xx采纳,获得10
9秒前
bing完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
番茄大王开心心完成签到 ,获得积分10
12秒前
Dali应助元谷雪采纳,获得10
13秒前
研友_knggYn完成签到,获得积分0
13秒前
69qq发布了新的文献求助30
13秒前
sam完成签到,获得积分10
13秒前
13秒前
XiaoMaomi完成签到,获得积分10
15秒前
songyl完成签到,获得积分10
18秒前
小齐怪完成签到,获得积分20
18秒前
脆啵啵马克宝完成签到 ,获得积分10
21秒前
暄暄发布了新的文献求助10
21秒前
Andy完成签到,获得积分10
21秒前
干净的雅青完成签到,获得积分10
22秒前
Biofly526完成签到,获得积分10
22秒前
23秒前
26秒前
dengdeng发布了新的文献求助10
26秒前
楼北完成签到,获得积分0
27秒前
明明就完成签到 ,获得积分10
27秒前
冷傲凝琴完成签到,获得积分10
28秒前
严锦强完成签到,获得积分10
29秒前
deng完成签到 ,获得积分10
30秒前
30秒前
Ch_7完成签到,获得积分10
30秒前
cc完成签到,获得积分10
31秒前
FashionBoy应助dengdeng采纳,获得10
32秒前
文静的行恶完成签到,获得积分10
32秒前
汉堡包应助大力惜海采纳,获得10
35秒前
傲娇的咖啡豆完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603532
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854133
捐赠科研通 4693329
什么是DOI,文献DOI怎么找? 2540799
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471806