Design and experiment of a binocular vision-based canopy volume extraction system for precision pesticide application by UAVs

天蓬 激光雷达 测距 遥感 环境科学 体积热力学 准确度和精密度 计算机科学 计算机视觉 人工智能 数学 地理 统计 物理 考古 电信 量子力学
作者
Ruirui Zhang,Shi Lian,Longlong Li,Linhuan Zhang,C Zhang,Liping Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108197-108197 被引量:3
标识
DOI:10.1016/j.compag.2023.108197
摘要

When unmanned aerial vehicles (UAVs) are used for orchard chemicals application, accurate measurement of the canopy volume can provide decision support for determining pesticide dosages, flight parameters, and droplet sizes. Using binocular camera ranging, this study presents a novel canopy segmentation algorithm that preprocesses light detection ranging data to extract sub-grid canopy volumes. A binocular vision-based canopy volume extraction system for UAV chemical application was developed. The system utilizes multi-degree-of-freedom adaptive balance technology to ensure that the binocular camera can still vertically detect the canopy even when the flight attitude changes. Performance experiments were conducted using artificial fruit trees with different leaf densities and regular cardboard box as measurement targets. The canopy volume measurements indicate that the new model accurately detects target contours. When flying at 2 m/s, the maximum errors between system-measured and actual volumes were 6.58 and 9.37 % for the rectangular and triangular, respectively. Increasing speeds and attitudes lead to increased errors and measurement variations. However, the position of the system relative to the target does not cause significant differences in results. The maximum measurement errors between system-measured and actual LiDAR values were 6.44 and 9.17 % for high- and low-density canopies, respectively. These results demonstrate that the proposed system has high measurement accuracy and provides a reliable precision UAV pesticide-spraying control system for plant protection based on real-time canopy detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英云发布了新的文献求助10
1秒前
1秒前
jagger完成签到,获得积分10
1秒前
2秒前
2秒前
含灵巨贼发布了新的文献求助10
2秒前
小太阳完成签到 ,获得积分10
2秒前
3秒前
烂漫的书蕾完成签到,获得积分10
3秒前
李爱国应助wu采纳,获得10
5秒前
灵珠学医发布了新的文献求助10
5秒前
5秒前
qiqiqi发布了新的文献求助10
6秒前
liu完成签到,获得积分20
6秒前
NGC完成签到,获得积分10
6秒前
6秒前
不安冰棍完成签到,获得积分10
6秒前
黎先生完成签到,获得积分10
7秒前
谜墨发布了新的文献求助30
7秒前
脑洞疼应助糟糕的语芹采纳,获得30
7秒前
含灵巨贼完成签到,获得积分10
7秒前
8秒前
8秒前
liu发布了新的文献求助10
9秒前
xx关注了科研通微信公众号
10秒前
InitialX发布了新的文献求助10
12秒前
懒羊羊大王完成签到,获得积分10
12秒前
mm发布了新的文献求助10
12秒前
12秒前
蓝天发布了新的文献求助10
12秒前
13秒前
wanci应助俏皮颤采纳,获得10
14秒前
lily发布了新的文献求助10
15秒前
15秒前
丘比特应助噗噗个噗采纳,获得10
15秒前
KING发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901