Apple leaf disease recognition method based on Siamese dilated Inception network with less training samples

人工智能 相似性(几何) 模式识别(心理学) 计算机科学 联营 图像(数学) 比例(比率) 深度学习 余弦相似度 计算机视觉 地图学 地理
作者
Shanwen Zhang,Li Wang,Chang-Qing Yu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108188-108188 被引量:9
标识
DOI:10.1016/j.compag.2023.108188
摘要

The application of existing deep learning networks may prove difficult when datasets are small. Siamese network can achieve better accuracy on small dataset. A recognition method of apple leaf disease based on Siamese dilated Inception network (SDINet) with few training samples is proposed. Dilated Inception module is introduced into AlexNet to construct two subnetworks for SDINet, and two subnetworks are responsible for extracting multi-scale features from image pair in the same layer, and the global pooling instead of the fully connected layers are utilized to reduce the number of model parameters and ensure that the features are not lost. SDINet is trained with image pairs, each pair consisting of two real diseased leaf images or one real and one healthy leaf image. SDINet makes full use of the advantages of multi-scale dilated Inception to enrich and improve the information, enhance the adaptability of the model. Different from the existing deep CNNs, SDINet uses cosine distance learning to calculate the similarity between the leaf image pairs to recognize apple diseases. Experimental results on the apple diseased leaf image dataset validate that the proposed method is effective to recognize apple leaf disease using a small number of training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huishi105发布了新的文献求助10
刚刚
刚刚
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
收拾收拾应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
916应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
yar应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
收拾收拾应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
坦率耳机应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得20
3秒前
916应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
hohn完成签到,获得积分10
5秒前
6秒前
dalian完成签到,获得积分10
6秒前
nzxnzx发布了新的文献求助10
6秒前
6秒前
Exc完成签到,获得积分0
7秒前
ddd完成签到,获得积分10
7秒前
祖冰绿完成签到,获得积分20
7秒前
金22完成签到,获得积分10
8秒前
Nicole完成签到 ,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650