Use of big data and machine learning algorithms to extract possible treatment targets in neurodevelopmental disorders

全基因组关联研究 机制(生物学) 大数据 数据科学 计算机科学 人工智能 认知科学 机器学习 神经科学 生物 心理学 遗传学 基因 单核苷酸多态性 认识论 操作系统 基因型 哲学
作者
Muhammad Ammar Malik,Stephen V. Faraone,Tom Michoel,Jan Haavik
出处
期刊:Pharmacology & Therapeutics [Elsevier]
卷期号:250: 108530-108530 被引量:2
标识
DOI:10.1016/j.pharmthera.2023.108530
摘要

Neurodevelopmental disorders (NDDs) impact multiple aspects of an individual's functioning, including social interactions, communication, and behaviors. The underlying biological mechanisms of NDDs are not yet fully understood, and pharmacological treatments have been limited in their effectiveness, in part due to the complex nature of these disorders and the heterogeneity of symptoms across individuals. Identifying genetic loci associated with NDDs can help in understanding biological mechanisms and potentially lead to the development of new treatments. However, the polygenic nature of these complex disorders has made identifying new treatment targets from genome-wide association studies (GWAS) challenging. Recent advances in the fields of big data and high-throughput tools have provided radically new insights into the underlying biological mechanism of NDDs. This paper reviews various big data approaches, including classical and more recent techniques like deep learning, which can identify potential treatment targets from GWAS and other omics data, with a particular emphasis on NDDs. We also emphasize the increasing importance of explainable and causal machine learning (ML) methods that can aid in identifying genes, molecular pathways, and more complex biological processes that may be future targets of intervention in these disorders. We conclude that these new developments in genetics and ML hold promise for advancing our understanding of NDDs and identifying novel treatment targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
circle完成签到,获得积分10
2秒前
3秒前
研友_LMBa6n发布了新的文献求助30
4秒前
4秒前
4秒前
研友_VZG7GZ应助醋醋采纳,获得10
5秒前
JHY发布了新的文献求助10
5秒前
6秒前
8秒前
lull发布了新的文献求助10
8秒前
善学以致用应助bybyby采纳,获得30
8秒前
ding应助方可获得采纳,获得10
10秒前
10秒前
WANG发布了新的文献求助10
11秒前
Simonzenith发布了新的文献求助10
13秒前
LW发布了新的文献求助10
13秒前
营养小刘完成签到,获得积分20
15秒前
16秒前
16秒前
19秒前
ddd发布了新的文献求助30
19秒前
wangyf发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
善学以致用应助lull采纳,获得10
21秒前
GTAG完成签到,获得积分10
21秒前
ywx发布了新的文献求助10
21秒前
营养小刘发布了新的文献求助10
22秒前
LW完成签到,获得积分10
22秒前
pluto应助QQWQEQRQ采纳,获得10
23秒前
23秒前
SUS完成签到,获得积分10
23秒前
醋醋发布了新的文献求助10
24秒前
25秒前
SUS发布了新的文献求助30
26秒前
翻似烂柯人完成签到,获得积分10
26秒前
27秒前
pupu发布了新的文献求助10
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233285
求助须知:如何正确求助?哪些是违规求助? 2879856
关于积分的说明 8212977
捐赠科研通 2547323
什么是DOI,文献DOI怎么找? 1376744
科研通“疑难数据库(出版商)”最低求助积分说明 647692
邀请新用户注册赠送积分活动 623115