A token selection-based multi-scale dual-branch CNN-transformer network for 12-lead ECG signal classification

计算机科学 卷积神经网络 变压器 深度学习 人工智能 冗余(工程) 模式识别(心理学) 机器学习 数据挖掘 工程类 电压 操作系统 电气工程
作者
Siyuan Zhang,Cheng Lian,Bingrong Xu,Junbin Zang,Zhigang Zeng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:280: 111006-111006 被引量:11
标识
DOI:10.1016/j.knosys.2023.111006
摘要

The timely identification of cardiovascular diseases is critical for effective intervention, with the electrocardiogram (ECG) serving as a pivotal diagnostic tool. Recent advancements in deep learning-based methods have significantly enhanced the accuracy of ECG signal classification. In clinical settings, cardiologists rely on diagnoses derived from standardized 12-lead ECG recordings. It must be acknowledged that there is considerable redundancy in the 12-lead ECG recordings used for ECG signal classification, thereby hindering their generalization capabilities. Meanwhile, considering multi-scale features in 12-lead ECG recordings is a crucial aspect that is often overlooked by existing methods. Based on the above observations, we develop a multi-scale Convolutional Transformer network for ECG signal classification. By utilizing learnable Convolutional neural network (CNN) blocks and novel dual-branch Transformer encoders, the proposed network automatically extracts features at different scales, resulting in superior feature representation. Additionally, by discarding low-importance patches and focusing on high-importance patches, we effectively alleviate information redundancy in the 12-lead ECG recordings. We conduct comprehensive experiments on three commonly used ECG datasets. The Research results show that our proposed network outperforms existing state-of-the-art networks in multiple tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助轻松的山河采纳,获得10
1秒前
小滕发布了新的文献求助10
3秒前
4秒前
ljs完成签到,获得积分10
4秒前
morgenlefay发布了新的文献求助10
5秒前
9秒前
10秒前
10秒前
阿白完成签到 ,获得积分10
14秒前
渣渣XM发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
无花果应助milewangzi采纳,获得10
20秒前
薛娥完成签到,获得积分10
21秒前
CodeCraft应助渣渣XM采纳,获得10
22秒前
22秒前
mmm发布了新的文献求助10
23秒前
hzwyyds应助感性的梦露采纳,获得20
23秒前
May应助Anoxia采纳,获得50
24秒前
huiliang应助Anoxia采纳,获得50
24秒前
大模型应助可爱的柜子采纳,获得10
24秒前
25秒前
27秒前
bkagyin应助yehuaiyu采纳,获得10
28秒前
壮观惋庭完成签到,获得积分10
28秒前
文静千凡发布了新的文献求助10
29秒前
赘婿应助小滕采纳,获得10
29秒前
天天快乐应助Moshiqi688采纳,获得10
30秒前
嘻嘻哈哈发布了新的文献求助10
30秒前
lewis_xl完成签到,获得积分10
31秒前
31秒前
32秒前
32秒前
yidi01完成签到,获得积分10
34秒前
kuu发布了新的文献求助10
35秒前
37秒前
洋洋发布了新的文献求助10
38秒前
milewangzi发布了新的文献求助10
38秒前
小豆豆完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309