A token selection-based multi-scale dual-branch CNN-transformer network for 12-lead ECG signal classification

计算机科学 卷积神经网络 变压器 深度学习 人工智能 冗余(工程) 模式识别(心理学) 机器学习 数据挖掘 工程类 电压 操作系统 电气工程
作者
Siyuan Zhang,Cheng Lian,Bingrong Xu,Junbin Zang,Zhigang Zeng
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 111006-111006 被引量:8
标识
DOI:10.1016/j.knosys.2023.111006
摘要

The timely identification of cardiovascular diseases is critical for effective intervention, with the electrocardiogram (ECG) serving as a pivotal diagnostic tool. Recent advancements in deep learning-based methods have significantly enhanced the accuracy of ECG signal classification. In clinical settings, cardiologists rely on diagnoses derived from standardized 12-lead ECG recordings. It must be acknowledged that there is considerable redundancy in the 12-lead ECG recordings used for ECG signal classification, thereby hindering their generalization capabilities. Meanwhile, considering multi-scale features in 12-lead ECG recordings is a crucial aspect that is often overlooked by existing methods. Based on the above observations, we develop a multi-scale Convolutional Transformer network for ECG signal classification. By utilizing learnable Convolutional neural network (CNN) blocks and novel dual-branch Transformer encoders, the proposed network automatically extracts features at different scales, resulting in superior feature representation. Additionally, by discarding low-importance patches and focusing on high-importance patches, we effectively alleviate information redundancy in the 12-lead ECG recordings. We conduct comprehensive experiments on three commonly used ECG datasets. The Research results show that our proposed network outperforms existing state-of-the-art networks in multiple tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞羽发布了新的文献求助10
1秒前
2秒前
2秒前
粱自中完成签到,获得积分10
2秒前
SciGPT应助诺之采纳,获得10
2秒前
3秒前
金籽发布了新的文献求助10
4秒前
qikkk应助年轻的草丛采纳,获得10
5秒前
5秒前
黄同学发布了新的文献求助10
6秒前
FashionBoy应助傲娇的蛋挞采纳,获得10
7秒前
潇洒哥哥发布了新的文献求助10
7秒前
8秒前
8秒前
清爽老九发布了新的文献求助50
10秒前
liyuanhua完成签到 ,获得积分10
11秒前
11秒前
jindou完成签到,获得积分10
11秒前
11秒前
上官若男应助李李采纳,获得10
11秒前
咕嘟咕嘟发布了新的文献求助10
11秒前
YA完成签到,获得积分10
12秒前
Owen应助科研通管家采纳,获得20
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
Akim应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
13秒前
cocolu应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
mini完成签到,获得积分10
13秒前
共享精神应助清爽老九采纳,获得10
14秒前
打打应助清爽老九采纳,获得30
14秒前
共享精神应助清爽老九采纳,获得10
14秒前
111发布了新的文献求助10
14秒前
NXK发布了新的文献求助10
15秒前
totoro完成签到,获得积分10
16秒前
万能图书馆应助惠飞薇采纳,获得10
17秒前
华仔应助111采纳,获得10
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443772
求助须知:如何正确求助?哪些是违规求助? 3039907
关于积分的说明 8978775
捐赠科研通 2728422
什么是DOI,文献DOI怎么找? 1496514
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213