Seismic attribute analysis with a combination of convolutional autoencoder and random forest in a turbidite reservoir

自编码 地震属性 地质学 随机森林 卷积神经网络 人工智能 模式识别(心理学) 岩石学 地震学 深度学习 算法 计算机科学 地貌学 构造盆地
作者
Qiannan Wang,Zhiguo Wang,Dengliang Gao,Zhaoqi Gao,Junxiong Jia,Jianbing Zhu,Jinghuai Gao
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA207-WA217 被引量:3
标识
DOI:10.1190/geo2023-0127.1
摘要

Due to the complex depositional environment of a turbidite reservoir in the Niuzhuang Delta, China, the traditional seismic facies classification is a challenge to perform accurately and continuously. Due to the thin turbidite layers in the reservoir, machine-learning-based prediction of sandstone thickness is challenging. Inspired by the autoencoder, we develop an open-source deep-learning workflow that combines unsupervised and supervised learning with jointed latent eigenvalues of the convolutional autoencoder (CAE) and traditional seismic attributes for seismic facies classification and sandstone thickness prediction constrained by the facies distribution. First, we extract lower-dimensional latent eigenvalues as a category of novel seismic attributes from the seismic data using a CAE. To accurately and effectively extract lower-dimensional latent eigenvalues, we develop a hybrid loss function based on the mean-squared error loss and the smooth L1 loss in this CAE. Then, we use principal component (PC) analysis to extract the first four PCs of these seismic lower-dimensional latent eigenvalues. Using unsupervised K-means, we cluster the first four PCs to form seismic facies. Finally, we take the first four PCs with the traditional seismic attributes as input and the sandstone thickness as labels for the random forest to predict the sandstone thickness distribution. The results of seismic facies and sandstone thickness distribution confirm the potential and advantages of our workflow, which can speed up the identification of seismic facies with smoother boundaries, improve the prediction accuracy by 16% over than that of traditional seismic attributes, and provide more depositional insight for a turbidite reservoir of the Shahejie Formation in the Niuzhuang Delta, China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默默早晨完成签到 ,获得积分10
1秒前
yang发布了新的文献求助10
3秒前
科研通AI6应助Jodie采纳,获得10
5秒前
二次元喵酱完成签到,获得积分10
5秒前
xinbowey完成签到,获得积分10
5秒前
鬼切发布了新的文献求助10
7秒前
搜集达人应助跳跃的翼采纳,获得10
9秒前
10秒前
困困羊完成签到 ,获得积分10
10秒前
LN给LN的求助进行了留言
11秒前
Yixuan_Zou完成签到,获得积分10
12秒前
13秒前
神内小天使完成签到,获得积分10
14秒前
Yixuan_Zou发布了新的文献求助10
15秒前
16秒前
17秒前
深情安青应助朴素的松采纳,获得10
19秒前
善学以致用应助伯言采纳,获得10
19秒前
张玮发布了新的文献求助10
21秒前
ri_290完成签到,获得积分10
23秒前
shiori发布了新的文献求助10
23秒前
科研通AI6应助Echo采纳,获得10
23秒前
30秒前
打打应助朴素的松采纳,获得10
30秒前
伯言发布了新的文献求助10
33秒前
NexusExplorer应助Lialilico采纳,获得10
34秒前
风格完成签到,获得积分10
35秒前
kingwhitewing发布了新的文献求助10
36秒前
37秒前
Aron发布了新的文献求助10
37秒前
42秒前
42秒前
烟花应助yang采纳,获得10
43秒前
Owen应助inter采纳,获得10
43秒前
lynn发布了新的文献求助10
47秒前
FLyu发布了新的文献求助10
47秒前
48秒前
小蘑菇应助土豆土豆采纳,获得10
48秒前
niNe3YUE应助研友_Ljqal8采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550