Seismic attribute analysis with a combination of convolutional autoencoder and random forest in a turbidite reservoir

自编码 地震属性 地质学 随机森林 卷积神经网络 人工智能 模式识别(心理学) 岩石学 地震学 深度学习 算法 计算机科学 地貌学 构造盆地
作者
Qiannan Wang,Zhiguo Wang,Dengliang Gao,Zhaoqi Gao,Junxiong Jia,Jianbing Zhu,Jinghuai Gao
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA207-WA217 被引量:3
标识
DOI:10.1190/geo2023-0127.1
摘要

Due to the complex depositional environment of a turbidite reservoir in the Niuzhuang Delta, China, the traditional seismic facies classification is a challenge to perform accurately and continuously. Due to the thin turbidite layers in the reservoir, machine-learning-based prediction of sandstone thickness is challenging. Inspired by the autoencoder, we develop an open-source deep-learning workflow that combines unsupervised and supervised learning with jointed latent eigenvalues of the convolutional autoencoder (CAE) and traditional seismic attributes for seismic facies classification and sandstone thickness prediction constrained by the facies distribution. First, we extract lower-dimensional latent eigenvalues as a category of novel seismic attributes from the seismic data using a CAE. To accurately and effectively extract lower-dimensional latent eigenvalues, we develop a hybrid loss function based on the mean-squared error loss and the smooth L1 loss in this CAE. Then, we use principal component (PC) analysis to extract the first four PCs of these seismic lower-dimensional latent eigenvalues. Using unsupervised K-means, we cluster the first four PCs to form seismic facies. Finally, we take the first four PCs with the traditional seismic attributes as input and the sandstone thickness as labels for the random forest to predict the sandstone thickness distribution. The results of seismic facies and sandstone thickness distribution confirm the potential and advantages of our workflow, which can speed up the identification of seismic facies with smoother boundaries, improve the prediction accuracy by 16% over than that of traditional seismic attributes, and provide more depositional insight for a turbidite reservoir of the Shahejie Formation in the Niuzhuang Delta, China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bluekids发布了新的文献求助50
刚刚
LDL完成签到,获得积分10
1秒前
怕孤独的忆南完成签到,获得积分10
1秒前
热情醉山完成签到,获得积分10
1秒前
1秒前
星河梦枕完成签到,获得积分10
3秒前
PHHHH发布了新的文献求助10
4秒前
4秒前
暖暖完成签到,获得积分10
4秒前
4秒前
4秒前
张天完成签到,获得积分10
4秒前
星辰大海应助汤姆猫采纳,获得10
4秒前
5秒前
zsfxqq完成签到 ,获得积分10
5秒前
SciGPT应助点心采纳,获得10
5秒前
6秒前
Hou发布了新的文献求助20
6秒前
yjjin发布了新的文献求助10
6秒前
科目三应助菠萝贝采纳,获得10
7秒前
Zero_榊啸号完成签到,获得积分10
7秒前
8秒前
陶远望完成签到,获得积分0
8秒前
望除完成签到,获得积分10
8秒前
微笑完成签到,获得积分10
8秒前
悦耳冷松发布了新的文献求助10
8秒前
zh发布了新的文献求助10
9秒前
实验大牛完成签到,获得积分10
9秒前
非常完成签到,获得积分10
9秒前
11235应助JayceHe采纳,获得10
10秒前
小马想毕业完成签到,获得积分10
10秒前
bkagyin应助禾苗采纳,获得10
10秒前
10秒前
kingwill发布了新的文献求助20
10秒前
肥鱼不会飞完成签到,获得积分10
10秒前
离谱的deep完成签到,获得积分10
11秒前
11秒前
嘎嘎的鸡神完成签到,获得积分10
11秒前
微笑发布了新的文献求助10
11秒前
lisa完成签到,获得积分10
11秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585147
求助须知:如何正确求助?哪些是违规求助? 4668950
关于积分的说明 14773671
捐赠科研通 4616972
什么是DOI,文献DOI怎么找? 2530364
邀请新用户注册赠送积分活动 1499158
关于科研通互助平台的介绍 1467659