Seismic attribute analysis with a combination of convolutional autoencoder and random forest in a turbidite reservoir

自编码 地震属性 地质学 随机森林 卷积神经网络 人工智能 模式识别(心理学) 岩石学 地震学 深度学习 算法 计算机科学 地貌学 构造盆地
作者
Qiannan Wang,Zhiguo Wang,Dengliang Gao,Zhaoqi Gao,Junxiong Jia,Jianbing Zhu,Jinghuai Gao
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA207-WA217 被引量:3
标识
DOI:10.1190/geo2023-0127.1
摘要

Due to the complex depositional environment of a turbidite reservoir in the Niuzhuang Delta, China, the traditional seismic facies classification is a challenge to perform accurately and continuously. Due to the thin turbidite layers in the reservoir, machine-learning-based prediction of sandstone thickness is challenging. Inspired by the autoencoder, we develop an open-source deep-learning workflow that combines unsupervised and supervised learning with jointed latent eigenvalues of the convolutional autoencoder (CAE) and traditional seismic attributes for seismic facies classification and sandstone thickness prediction constrained by the facies distribution. First, we extract lower-dimensional latent eigenvalues as a category of novel seismic attributes from the seismic data using a CAE. To accurately and effectively extract lower-dimensional latent eigenvalues, we develop a hybrid loss function based on the mean-squared error loss and the smooth L1 loss in this CAE. Then, we use principal component (PC) analysis to extract the first four PCs of these seismic lower-dimensional latent eigenvalues. Using unsupervised K-means, we cluster the first four PCs to form seismic facies. Finally, we take the first four PCs with the traditional seismic attributes as input and the sandstone thickness as labels for the random forest to predict the sandstone thickness distribution. The results of seismic facies and sandstone thickness distribution confirm the potential and advantages of our workflow, which can speed up the identification of seismic facies with smoother boundaries, improve the prediction accuracy by 16% over than that of traditional seismic attributes, and provide more depositional insight for a turbidite reservoir of the Shahejie Formation in the Niuzhuang Delta, China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荣荣发布了新的文献求助10
刚刚
刚刚
充电宝应助科研通管家采纳,获得30
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得50
刚刚
Orange应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
Cherish应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
Lori发布了新的文献求助10
1秒前
2秒前
2秒前
郭丹丹完成签到 ,获得积分10
3秒前
景笑天发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
NikiJu完成签到 ,获得积分10
5秒前
荣荣完成签到,获得积分10
7秒前
7秒前
充电宝应助小杨采纳,获得10
7秒前
zhang发布了新的文献求助10
7秒前
drirshad完成签到,获得积分10
8秒前
如梦如画发布了新的文献求助10
8秒前
星辰大海应助lhz采纳,获得10
8秒前
mym发布了新的文献求助10
10秒前
10秒前
希望天下0贩的0应助感谢采纳,获得10
11秒前
周周完成签到 ,获得积分10
12秒前
12秒前
xxx关注了科研通微信公众号
12秒前
13秒前
FF完成签到,获得积分10
13秒前
汉堡国王发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492