Seismic attribute analysis with a combination of convolutional autoencoder and random forest in a turbidite reservoir

自编码 地震属性 地质学 随机森林 卷积神经网络 人工智能 模式识别(心理学) 岩石学 地震学 深度学习 算法 计算机科学 地貌学 构造盆地
作者
Qiannan Wang,Zhiguo Wang,Dengliang Gao,Zhaoqi Gao,Junxiong Jia,Jianbing Zhu,Jinghuai Gao
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA207-WA217 被引量:2
标识
DOI:10.1190/geo2023-0127.1
摘要

Due to the complex depositional environment of a turbidite reservoir in the Niuzhuang Delta, China, the traditional seismic facies classification is a challenge to perform accurately and continuously. Due to the thin turbidite layers in the reservoir, machine-learning-based prediction of sandstone thickness is challenging. Inspired by the autoencoder, we develop an open-source deep-learning workflow that combines unsupervised and supervised learning with jointed latent eigenvalues of the convolutional autoencoder (CAE) and traditional seismic attributes for seismic facies classification and sandstone thickness prediction constrained by the facies distribution. First, we extract lower-dimensional latent eigenvalues as a category of novel seismic attributes from the seismic data using a CAE. To accurately and effectively extract lower-dimensional latent eigenvalues, we develop a hybrid loss function based on the mean-squared error loss and the smooth L1 loss in this CAE. Then, we use principal component (PC) analysis to extract the first four PCs of these seismic lower-dimensional latent eigenvalues. Using unsupervised K-means, we cluster the first four PCs to form seismic facies. Finally, we take the first four PCs with the traditional seismic attributes as input and the sandstone thickness as labels for the random forest to predict the sandstone thickness distribution. The results of seismic facies and sandstone thickness distribution confirm the potential and advantages of our workflow, which can speed up the identification of seismic facies with smoother boundaries, improve the prediction accuracy by 16% over than that of traditional seismic attributes, and provide more depositional insight for a turbidite reservoir of the Shahejie Formation in the Niuzhuang Delta, China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
miumiu完成签到,获得积分20
1秒前
2秒前
2秒前
LEE123发布了新的文献求助10
2秒前
坦率紫槐完成签到,获得积分10
2秒前
谷中青完成签到,获得积分10
3秒前
Michael发布了新的文献求助10
3秒前
Reese发布了新的文献求助10
3秒前
故篱陌陌发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
淡然冬灵发布了新的文献求助10
5秒前
diu完成签到,获得积分10
5秒前
啊TiP完成签到,获得积分10
5秒前
5秒前
PPkk发布了新的文献求助10
6秒前
nihao2023完成签到,获得积分10
6秒前
6秒前
喜东东完成签到,获得积分10
6秒前
天天快乐应助miumiu采纳,获得10
7秒前
钮祜禄废废完成签到,获得积分10
7秒前
7秒前
黑炭完成签到 ,获得积分10
8秒前
8秒前
suman发布了新的文献求助10
8秒前
8秒前
情怀应助失眠碧琴采纳,获得10
9秒前
小羊烧鸡发布了新的文献求助10
9秒前
fan发布了新的文献求助10
9秒前
繁荣的映易应助zzzzz采纳,获得10
9秒前
mhy发布了新的文献求助10
10秒前
无花果应助笙璃采纳,获得10
10秒前
愉快箴发布了新的文献求助10
10秒前
QH发布了新的文献求助10
10秒前
银雀w完成签到,获得积分10
11秒前
aixuexi*完成签到,获得积分10
11秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440824
求助须知:如何正确求助?哪些是违规求助? 3037241
关于积分的说明 8968067
捐赠科研通 2725790
什么是DOI,文献DOI怎么找? 1495072
科研通“疑难数据库(出版商)”最低求助积分说明 691074
邀请新用户注册赠送积分活动 687806