Seismic attribute analysis with a combination of convolutional autoencoder and random forest in a turbidite reservoir

自编码 地震属性 地质学 随机森林 卷积神经网络 人工智能 模式识别(心理学) 岩石学 地震学 深度学习 算法 计算机科学 地貌学 构造盆地
作者
Qiannan Wang,Zhiguo Wang,Dengliang Gao,Zhaoqi Gao,Junxiong Jia,Jianbing Zhu,Jinghuai Gao
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA207-WA217 被引量:3
标识
DOI:10.1190/geo2023-0127.1
摘要

Due to the complex depositional environment of a turbidite reservoir in the Niuzhuang Delta, China, the traditional seismic facies classification is a challenge to perform accurately and continuously. Due to the thin turbidite layers in the reservoir, machine-learning-based prediction of sandstone thickness is challenging. Inspired by the autoencoder, we develop an open-source deep-learning workflow that combines unsupervised and supervised learning with jointed latent eigenvalues of the convolutional autoencoder (CAE) and traditional seismic attributes for seismic facies classification and sandstone thickness prediction constrained by the facies distribution. First, we extract lower-dimensional latent eigenvalues as a category of novel seismic attributes from the seismic data using a CAE. To accurately and effectively extract lower-dimensional latent eigenvalues, we develop a hybrid loss function based on the mean-squared error loss and the smooth L1 loss in this CAE. Then, we use principal component (PC) analysis to extract the first four PCs of these seismic lower-dimensional latent eigenvalues. Using unsupervised K-means, we cluster the first four PCs to form seismic facies. Finally, we take the first four PCs with the traditional seismic attributes as input and the sandstone thickness as labels for the random forest to predict the sandstone thickness distribution. The results of seismic facies and sandstone thickness distribution confirm the potential and advantages of our workflow, which can speed up the identification of seismic facies with smoother boundaries, improve the prediction accuracy by 16% over than that of traditional seismic attributes, and provide more depositional insight for a turbidite reservoir of the Shahejie Formation in the Niuzhuang Delta, China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子小发布了新的文献求助10
2秒前
聽你说发布了新的文献求助10
2秒前
Disguise完成签到,获得积分10
2秒前
clover112完成签到,获得积分10
2秒前
小胡同学完成签到,获得积分10
4秒前
小正发布了新的文献求助10
4秒前
leslie应助悬铃木采纳,获得10
4秒前
D-L@rabbit发布了新的文献求助10
4秒前
科研通AI6应助昭奚采纳,获得10
4秒前
留白完成签到,获得积分10
5秒前
酷炫甜瓜发布了新的文献求助10
6秒前
6秒前
ll关注了科研通微信公众号
7秒前
火焰迷踪完成签到,获得积分10
8秒前
英俊的铭应助小化采纳,获得10
8秒前
William完成签到,获得积分10
11秒前
留白发布了新的文献求助10
12秒前
12秒前
852应助舒心的初露采纳,获得10
12秒前
ddk发布了新的文献求助10
12秒前
铅笔完成签到,获得积分10
14秒前
Lucas应助undo采纳,获得10
14秒前
CipherSage应助Zaf采纳,获得10
15秒前
17秒前
18秒前
Miracle完成签到,获得积分10
21秒前
21秒前
hulian发布了新的文献求助10
24秒前
24秒前
姚哈哈发布了新的文献求助10
25秒前
LOVESWEET完成签到,获得积分10
27秒前
王WW完成签到,获得积分10
28秒前
morichoc完成签到 ,获得积分10
28秒前
orixero应助D-L@rabbit采纳,获得10
28秒前
黑皮金刚发布了新的文献求助10
28秒前
29秒前
杜宇发布了新的文献求助10
30秒前
31秒前
35秒前
谨慎易文完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527