SDGFormer: An Efficient Convolution Network Structurally Similar to Transformer

计算机科学 失败 卷积神经网络 变压器 人工智能 卷积(计算机科学) 高内存 人工神经网络 深度学习 机器学习 模式识别(心理学) 并行计算 量子力学 物理 电压
作者
Chaohao Wen,Xun Gong
标识
DOI:10.1109/icme55011.2023.00206
摘要

Deep Neural Networks (DNN) have achieved extraordinary success in many visual recognition tasks. Visual Transformer (ViT), which is derived from Natural Language Processing (NLP), has achieved state-of-the-art (SOTA) results on many tasks due to its capability of capturing long-range dependencies in visual data. However, Existing ViT models are challenging to deploy on devices due to their massive computational consumption, huge memory overhead, and reliance on large datasets. In this work, we address these issues by replacing some computationally expensive and memory-intensive modules in ViT with standard Convolutional Neural Network (CNN) modules. Firstly, we propose an efficient Self-Attention module called SDG-Attention (SDGA) with linear space and time complexity, and an economical FeedForward Network (FFN) composed of group convolution and shuffle channel (SFFN). Then, we develop a lightweight CNN model with SDGA and SFFN, SDGFormer, which embraces several priors of ViT and is LayerNorm-Free. We evaluate SDGFormer on ImageNet-1K and Mini-ImageNet, and the SDGFormer-S achieves a comparable top-1 accuracy of 77.6% on ImageNet-1K with 9.1M parameters and 1.6 GFlops regimes. Moreover, our SDGFormer-T achieves SOTA performance on Mini-ImageNet with 83.3% accuracy, demonstrating good generalization on small datasets without extra data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浴火重生完成签到,获得积分10
刚刚
hxh发布了新的文献求助10
刚刚
研友_ngX12Z发布了新的文献求助20
1秒前
于初南完成签到,获得积分20
1秒前
llullalla完成签到 ,获得积分10
1秒前
七月夏栀完成签到,获得积分10
1秒前
Zachtack完成签到 ,获得积分10
3秒前
xingxing发布了新的文献求助10
3秒前
隐形曼青应助zhao采纳,获得10
3秒前
4秒前
珊珊发布了新的文献求助10
4秒前
熠熠发布了新的文献求助10
4秒前
6秒前
6秒前
DCW完成签到,获得积分10
7秒前
华仔应助yang采纳,获得10
7秒前
7秒前
zys2001mezy应助大魁采纳,获得10
8秒前
北林完成签到,获得积分10
8秒前
跳跃的蝴蝶完成签到,获得积分10
8秒前
ions完成签到,获得积分10
9秒前
可爱的函函应助文艺寄灵采纳,获得10
9秒前
10秒前
大个应助山神厘子采纳,获得10
10秒前
温超发布了新的文献求助10
10秒前
11秒前
我是老大应助sqy77采纳,获得10
11秒前
机灵柚子应助会飞的yu采纳,获得20
12秒前
xzn1123应助跳跃的蝴蝶采纳,获得10
12秒前
酷波er应助hxh采纳,获得10
13秒前
14秒前
Orange应助甄冰海采纳,获得10
14秒前
15秒前
15秒前
15秒前
过冷风发布了新的文献求助100
16秒前
16秒前
舆上帝同行完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
JamesPei应助温超采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198