亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning assisted hybrid transduction nanocomposite based flexible pressure sensor matrix for human gait analysis

压力传感器 材料科学 卷积神经网络 计算机科学 极限学习机 人工智能 人工神经网络 机械工程 工程类
作者
Nadeem Tariq Beigh,Faizan Tariq Beigh,Dhiman Mallick
出处
期刊:Nano Energy [Elsevier]
卷期号:116: 108824-108824 被引量:55
标识
DOI:10.1016/j.nanoen.2023.108824
摘要

Human gait analysis strongly correlates with critical health metrics and provides significant information about physiological well-being. Therefore, accurate, fast, and cost-effective gait monitoring is required for intelligent healthcare systems. This paper reports the development of a flexible hybrid transduction Barium Titanate (BTO)/SU-8 nanocomposite-based, individually addressable pressure sensor matrix. The proposed sensor is highly suitable for wearables compared to the conventional pressure sensors due to its speedy and cost-effective design flow and ease of operation. The hybrid (piezoelectric/triboelectric), photo-patternable active layer enables strain and contact electrification-based sensing that convolves into a highly sensitive, lower cross talk and large area pressure sensing. The reported sensor is incorporated with a solder-free modular data acquisition setup for a straightforward design integration. A pressure sensitivity of 34 mV kPa-1 for the deep linear region and 2.7 mV kPa-1 for the linear region over a pressure range of 0–170 kPa is reported. The sensor shows excellent reliability and negligible hysteresis with an average deviation of 2.7 %. Furthermore, the 36 pressure cells with hybrid transduction deliver rich feature extraction to machine learning algorithms compared to single transducer-based systems for an accurate gait and grip strength monitoring. The developed convolution neural network (CNN)-2D model gives a model accuracy of 98.5 % and 98.3 % for two different gait characterizations, while delivering a model accuracy of 93.75 % for grip strength assessment. The combination of hybrid sensor design, development, and use of machine learning offers a novel approach to tackle the issues associated with sensors that are incompatible with rapidly developing smart healthcare technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KYT完成签到 ,获得积分10
48秒前
49秒前
庄严发布了新的文献求助10
55秒前
我是老大应助科研通管家采纳,获得10
1分钟前
FashionBoy应助傲娇的曼香采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
JJBOND发布了新的文献求助10
2分钟前
2分钟前
2分钟前
JJBOND发布了新的文献求助10
2分钟前
勤恳八宝粥完成签到 ,获得积分10
2分钟前
傲娇的曼香完成签到,获得积分10
2分钟前
Zzoevy完成签到 ,获得积分10
2分钟前
2分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
Crisp完成签到 ,获得积分10
4分钟前
6分钟前
永远发布了新的文献求助10
6分钟前
玛琳卡迪马完成签到 ,获得积分10
6分钟前
萨尔莫斯完成签到,获得积分10
7分钟前
zht完成签到,获得积分10
7分钟前
kevin完成签到 ,获得积分10
7分钟前
8分钟前
hwx发布了新的文献求助30
8分钟前
9分钟前
江小姜发布了新的文献求助10
9分钟前
江小姜完成签到,获得积分20
10分钟前
貔貅完成签到 ,获得积分10
10分钟前
赘婿应助杜琦采纳,获得10
10分钟前
10分钟前
10分钟前
懒洋洋完成签到,获得积分10
10分钟前
杜琦发布了新的文献求助10
10分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845355
求助须知:如何正确求助?哪些是违规求助? 6201719
关于积分的说明 15616386
捐赠科研通 4962184
什么是DOI,文献DOI怎么找? 2675323
邀请新用户注册赠送积分活动 1620073
关于科研通互助平台的介绍 1575372