Machine learning assisted hybrid transduction nanocomposite based flexible pressure sensor matrix for human gait analysis

压力传感器 材料科学 卷积神经网络 计算机科学 极限学习机 人工智能 人工神经网络 机械工程 工程类
作者
Nadeem Tariq Beigh,Faizan Tariq Beigh,Dhiman Mallick
出处
期刊:Nano Energy [Elsevier]
卷期号:116: 108824-108824 被引量:19
标识
DOI:10.1016/j.nanoen.2023.108824
摘要

Human gait analysis strongly correlates with critical health metrics and provides significant information about physiological well-being. Therefore, accurate, fast, and cost-effective gait monitoring is required for intelligent healthcare systems. This paper reports the development of a flexible hybrid transduction Barium Titanate (BTO)/SU-8 nanocomposite-based, individually addressable pressure sensor matrix. The proposed sensor is highly suitable for wearables compared to the conventional pressure sensors due to its speedy and cost-effective design flow and ease of operation. The hybrid (piezoelectric/triboelectric), photo-patternable active layer enables strain and contact electrification-based sensing that convolves into a highly sensitive, lower cross talk and large area pressure sensing. The reported sensor is incorporated with a solder-free modular data acquisition setup for a straightforward design integration. A pressure sensitivity of 34 mV kPa-1 for the deep linear region and 2.7 mV kPa-1 for the linear region over a pressure range of 0–170 kPa is reported. The sensor shows excellent reliability and negligible hysteresis with an average deviation of 2.7 %. Furthermore, the 36 pressure cells with hybrid transduction deliver rich feature extraction to machine learning algorithms compared to single transducer-based systems for an accurate gait and grip strength monitoring. The developed convolution neural network (CNN)-2D model gives a model accuracy of 98.5 % and 98.3 % for two different gait characterizations, while delivering a model accuracy of 93.75 % for grip strength assessment. The combination of hybrid sensor design, development, and use of machine learning offers a novel approach to tackle the issues associated with sensors that are incompatible with rapidly developing smart healthcare technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情未来发布了新的文献求助200
刚刚
1秒前
Muya发布了新的文献求助10
2秒前
一手灵魂完成签到,获得积分10
2秒前
wen发布了新的文献求助10
4秒前
思思完成签到 ,获得积分10
5秒前
背后老六完成签到,获得积分10
5秒前
6秒前
zzr123发布了新的文献求助10
6秒前
Du发布了新的文献求助30
7秒前
7秒前
8秒前
8秒前
www完成签到,获得积分10
8秒前
开朗白开水完成签到 ,获得积分10
9秒前
随心发布了新的文献求助10
10秒前
wen完成签到,获得积分10
10秒前
10秒前
李健的粉丝团团长应助zwhy采纳,获得10
10秒前
CodeCraft应助糊涂的勒采纳,获得10
11秒前
www发布了新的文献求助10
11秒前
SB关闭了SB文献求助
11秒前
11秒前
13秒前
13秒前
背后老六发布了新的文献求助10
13秒前
四季养生人完成签到 ,获得积分10
13秒前
16秒前
酷波er应助Garfield采纳,获得10
16秒前
Owen应助韦行天采纳,获得30
17秒前
尊敬时光发布了新的文献求助10
18秒前
深情安青应助zzr123采纳,获得10
19秒前
A班袁湘琴完成签到,获得积分10
19秒前
兮兮兮兮兮兮完成签到,获得积分10
19秒前
蓝胖子发布了新的文献求助30
19秒前
笨笨念真完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
JOSIAH完成签到,获得积分10
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229126
求助须知:如何正确求助?哪些是违规求助? 2876954
关于积分的说明 8196847
捐赠科研通 2544250
什么是DOI,文献DOI怎么找? 1374230
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621703