Machine learning assisted hybrid transduction nanocomposite based flexible pressure sensor matrix for human gait analysis

压力传感器 材料科学 卷积神经网络 计算机科学 极限学习机 人工智能 人工神经网络 机械工程 工程类
作者
Nadeem Tariq Beigh,Faizan Tariq Beigh,Dhiman Mallick
出处
期刊:Nano Energy [Elsevier]
卷期号:116: 108824-108824 被引量:19
标识
DOI:10.1016/j.nanoen.2023.108824
摘要

Human gait analysis strongly correlates with critical health metrics and provides significant information about physiological well-being. Therefore, accurate, fast, and cost-effective gait monitoring is required for intelligent healthcare systems. This paper reports the development of a flexible hybrid transduction Barium Titanate (BTO)/SU-8 nanocomposite-based, individually addressable pressure sensor matrix. The proposed sensor is highly suitable for wearables compared to the conventional pressure sensors due to its speedy and cost-effective design flow and ease of operation. The hybrid (piezoelectric/triboelectric), photo-patternable active layer enables strain and contact electrification-based sensing that convolves into a highly sensitive, lower cross talk and large area pressure sensing. The reported sensor is incorporated with a solder-free modular data acquisition setup for a straightforward design integration. A pressure sensitivity of 34 mV kPa-1 for the deep linear region and 2.7 mV kPa-1 for the linear region over a pressure range of 0–170 kPa is reported. The sensor shows excellent reliability and negligible hysteresis with an average deviation of 2.7 %. Furthermore, the 36 pressure cells with hybrid transduction deliver rich feature extraction to machine learning algorithms compared to single transducer-based systems for an accurate gait and grip strength monitoring. The developed convolution neural network (CNN)-2D model gives a model accuracy of 98.5 % and 98.3 % for two different gait characterizations, while delivering a model accuracy of 93.75 % for grip strength assessment. The combination of hybrid sensor design, development, and use of machine learning offers a novel approach to tackle the issues associated with sensors that are incompatible with rapidly developing smart healthcare technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樱桃味的火苗完成签到,获得积分10
刚刚
刚刚
波波完成签到,获得积分10
1秒前
322628完成签到,获得积分10
1秒前
领导范儿应助silong采纳,获得10
1秒前
身为风帆发布了新的文献求助10
1秒前
applepie完成签到,获得积分10
1秒前
顾己完成签到,获得积分10
1秒前
宋嬴一完成签到,获得积分10
1秒前
1秒前
我超爱cs完成签到,获得积分10
2秒前
沉静哲瀚完成签到,获得积分10
2秒前
MADKAI发布了新的文献求助10
3秒前
喝汤一样完成签到,获得积分10
3秒前
3秒前
3秒前
wormzjl发布了新的文献求助10
3秒前
虚拟的眼神完成签到,获得积分10
5秒前
陈_Ccc完成签到 ,获得积分10
5秒前
文静达完成签到,获得积分10
5秒前
rui发布了新的文献求助30
5秒前
CC发布了新的文献求助10
5秒前
5秒前
兴奋的果汁完成签到,获得积分10
6秒前
6秒前
6秒前
浮三白完成签到,获得积分10
6秒前
爆米花应助沉静的夜玉采纳,获得10
7秒前
aodilee完成签到,获得积分10
7秒前
思源应助非常可爱采纳,获得20
7秒前
7秒前
沉静哲瀚发布了新的文献求助10
7秒前
高高的凡旋关注了科研通微信公众号
8秒前
Li完成签到,获得积分10
8秒前
经法发布了新的文献求助10
8秒前
FengyaoWang完成签到,获得积分10
8秒前
陶醉的向珊完成签到,获得积分10
9秒前
xczhu完成签到,获得积分10
9秒前
9秒前
cheng完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672