Deep Learning–based Prediction of Percutaneous Recanalization in Chronic Total Occlusion Using Coronary CT Angiography

医学 传统PCI 血运重建 经皮冠状动脉介入治疗 放射科 冠状动脉造影 血管造影 经皮 闭塞 心脏病学 内科学 心肌梗塞
作者
Zhen Zhou,Yifeng Gao,Weiwei Zhang,Nan Zhang,Hui Wang,Rui Wang,Zhifan Gao,Xiaomeng Huang,Shanshan Zhou,Xu Dai,Guang Yang,Heye Zhang,Koen Nieman,Lei Xu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (2) 被引量:4
标识
DOI:10.1148/radiol.231149
摘要

Background CT is helpful in guiding the revascularization of chronic total occlusion (CTO), but manual prediction scores of percutaneous coronary intervention (PCI) success have challenges. Deep learning (DL) is expected to predict success of PCI for CTO lesions more efficiently. Purpose To develop a DL model to predict guidewire crossing and PCI outcomes for CTO using coronary CT angiography (CCTA) and evaluate its performance compared with manual prediction scores.Participants with CTO lesions were prospectively identified from one tertiary hospital between January 2018 and December 2021 as the training set to develop the DL prediction model for PCI of CTO, with fivefold cross validation. The algorithm was tested using an external test set prospectively enrolled from three tertiary hospitals between January 2021 and June 2022 with the same eligibility criteria. All participants underwent preprocedural CCTA within 1 month before PCI. The end points were guidewire crossing within 30 minutes and PCI success of CTO.Results A total of 534 participants (mean age, 57.7 years ± 10.8 [SD]; 417 [78.1%] men) with 565 CTO lesions were included. In the external test set (186 participants with 189 CTOs), the DL model saved 85.0% of the reconstruction and analysis time of manual scores (mean, 73.7 seconds vs 418.2-466.9 seconds) and had higher accuracy than manual scores in predicting guidewire crossing within 30 minutes (DL, 91.0%; CT Registry of Chronic Total Occlusion Revascularization, 61.9%; Korean Multicenter CTO CT Registry [KCCT], 68.3%; CCTA-derived Multicenter CTO Registry of Japan (J-CTO), 68.8%; P < .05) and PCI success (DL, 93.7%; KCCT, 74.6%; J-CTO, 75.1%; P < .05). For DL, the area under the receiver operating characteristic curve was 0.97 (95% CI: 0.89, 0.99) for the training test set and 0.96 (95% CI: 0.90, 0.98) for the external test set. Conclusion The DL prediction model accurately predicted the percutaneous recanalization outcomes of CTO lesions and increased the efficiency of noninvasively grading the difficulty of PCI. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Pundziute-do Prado in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
甜甜玫瑰应助dabaan采纳,获得10
1秒前
2秒前
4秒前
亚蛋超可爱完成签到 ,获得积分10
5秒前
5秒前
6秒前
Hhh完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
坚强的多嘴小蘑菇完成签到,获得积分10
9秒前
9秒前
9秒前
柒z完成签到,获得积分10
10秒前
10秒前
糖果雨完成签到,获得积分10
10秒前
10秒前
Pineapple完成签到,获得积分10
10秒前
小二郎应助专注的映萱采纳,获得10
11秒前
11秒前
jm发布了新的文献求助20
12秒前
12秒前
13秒前
唯一发布了新的文献求助10
13秒前
华仔应助活力的彩虹采纳,获得10
13秒前
Hhh发布了新的文献求助10
13秒前
laohu2发布了新的文献求助10
14秒前
14秒前
汉堡包应助Debjor采纳,获得10
14秒前
阿潇完成签到 ,获得积分10
14秒前
木木发布了新的文献求助10
15秒前
Hellolyj应助王多鱼采纳,获得10
15秒前
从容芮应助轻松博超采纳,获得10
16秒前
研友_ZrlzRL发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154309
求助须知:如何正确求助?哪些是违规求助? 2805114
关于积分的说明 7863632
捐赠科研通 2463326
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629506
版权声明 601821