Deep Learning–based Prediction of Percutaneous Recanalization in Chronic Total Occlusion Using Coronary CT Angiography

医学 传统PCI 血运重建 经皮冠状动脉介入治疗 放射科 冠状动脉造影 血管造影 经皮 闭塞 心脏病学 内科学 心肌梗塞
作者
Zhen Zhou,Yifeng Gao,Weiwei Zhang,Nan Zhang,Hui Wang,Rui Wang,Zhifan Gao,Xiaomeng Huang,Shanshan Zhou,Xu Dai,Guang Yang,Heye Zhang,Koen Nieman,Lei Xu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (2) 被引量:4
标识
DOI:10.1148/radiol.231149
摘要

Background CT is helpful in guiding the revascularization of chronic total occlusion (CTO), but manual prediction scores of percutaneous coronary intervention (PCI) success have challenges. Deep learning (DL) is expected to predict success of PCI for CTO lesions more efficiently. Purpose To develop a DL model to predict guidewire crossing and PCI outcomes for CTO using coronary CT angiography (CCTA) and evaluate its performance compared with manual prediction scores.Participants with CTO lesions were prospectively identified from one tertiary hospital between January 2018 and December 2021 as the training set to develop the DL prediction model for PCI of CTO, with fivefold cross validation. The algorithm was tested using an external test set prospectively enrolled from three tertiary hospitals between January 2021 and June 2022 with the same eligibility criteria. All participants underwent preprocedural CCTA within 1 month before PCI. The end points were guidewire crossing within 30 minutes and PCI success of CTO.Results A total of 534 participants (mean age, 57.7 years ± 10.8 [SD]; 417 [78.1%] men) with 565 CTO lesions were included. In the external test set (186 participants with 189 CTOs), the DL model saved 85.0% of the reconstruction and analysis time of manual scores (mean, 73.7 seconds vs 418.2-466.9 seconds) and had higher accuracy than manual scores in predicting guidewire crossing within 30 minutes (DL, 91.0%; CT Registry of Chronic Total Occlusion Revascularization, 61.9%; Korean Multicenter CTO CT Registry [KCCT], 68.3%; CCTA-derived Multicenter CTO Registry of Japan (J-CTO), 68.8%; P < .05) and PCI success (DL, 93.7%; KCCT, 74.6%; J-CTO, 75.1%; P < .05). For DL, the area under the receiver operating characteristic curve was 0.97 (95% CI: 0.89, 0.99) for the training test set and 0.96 (95% CI: 0.90, 0.98) for the external test set. Conclusion The DL prediction model accurately predicted the percutaneous recanalization outcomes of CTO lesions and increased the efficiency of noninvasively grading the difficulty of PCI. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Pundziute-do Prado in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高端发布了新的文献求助50
1秒前
尹天扬完成签到,获得积分10
1秒前
2秒前
3秒前
整齐妙之完成签到,获得积分10
3秒前
JIa发布了新的文献求助10
3秒前
科研通AI2S应助还好采纳,获得10
4秒前
1257应助纪不愁采纳,获得10
4秒前
callous完成签到,获得积分10
5秒前
科研牛马完成签到,获得积分10
5秒前
李健应助zjq采纳,获得10
5秒前
打打应助卷网那个采纳,获得10
5秒前
123PY发布了新的文献求助30
5秒前
善良的道消完成签到,获得积分10
6秒前
6秒前
6秒前
乐乐应助自觉的夏之采纳,获得10
6秒前
7秒前
shenle发布了新的文献求助10
7秒前
7秒前
Baccano发布了新的文献求助10
7秒前
月亮球发布了新的文献求助10
8秒前
科研新秀z发布了新的文献求助30
8秒前
活力的绮晴完成签到,获得积分20
8秒前
8秒前
9秒前
SunK1876完成签到,获得积分10
9秒前
科研通AI2S应助舒心宛白采纳,获得10
10秒前
今后应助高兴的故事采纳,获得10
11秒前
wwww发布了新的文献求助10
11秒前
11秒前
大头发布了新的文献求助10
12秒前
12秒前
12秒前
科研通AI2S应助风行采纳,获得10
12秒前
纪不愁完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
不配.应助勤恳怀梦采纳,获得10
13秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
The Data Economy: Tools and Applications 1000
Diamonds: Properties, Synthesis and Applications 800
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3096956
求助须知:如何正确求助?哪些是违规求助? 2749008
关于积分的说明 7602475
捐赠科研通 2400798
什么是DOI,文献DOI怎么找? 1273694
科研通“疑难数据库(出版商)”最低求助积分说明 615878
版权声明 598999