RingMo-SAM: A Foundation Model for Segment Anything in Multimodal Remote-Sensing Images

计算机科学 分割 合成孔径雷达 人工智能 遥感 计算机视觉 图像分割 遥感应用 领域(数学) 编码器 深度学习 高光谱成像 地质学 数学 纯数学 操作系统
作者
Zhiyuan Yan,Junxi Li,Xuexue Li,Ruixue Zhou,Wenkai Zhang,Yingchao Feng,Wenhui Diao,Kun Fu,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:31
标识
DOI:10.1109/tgrs.2023.3332219
摘要

The proposal of Segment Anything Model (SAM) has created a new paradigm for deep learning-based semantic segmentation field, and has shown amazing generalization performance. However, we find it may fail or perform poorly on multimodal remote sensing scenarios, especially the Synthetic Aperture Radar (SAR) images. Besides, SAM does not provide category information of objects. In this paper, we propose a foundation model for multimodal remote sensing image segmentation called RingMo-SAM, which can not only segment anything in optical and SAR remote sensing data, but also identify object categories. First, a large-scale dataset containing millions of segmentation instances is constructed by collecting multiple open-source datasets in this field to train the model. Then, by constructing an instance-type and terrain-type category-decoupling mask decoder, the category-wise segmentation of various objects is achieved. In addition, a prompt encoder embedded with the characteristics of multimodal remote sensing data is designed. It not only supports multi-box prompts to improve the segmentation accuracy of multi-objects in complicated remote sensing scenes, but also supports SAR characteristics prompts to improve the segmentation performance on SAR images. Extensive experimental results on several datasets including iSAID, ISPRS Vaihingen, ISPRS Potsdam, AIR-PolSAR-Seg, etc. have demonstrated the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘浩然发布了新的文献求助10
1秒前
852应助黑粉头头采纳,获得10
1秒前
思源应助阿瓒采纳,获得10
1秒前
2秒前
3秒前
3秒前
zeng发布了新的文献求助10
3秒前
老衲发布了新的文献求助10
5秒前
5秒前
zilhua发布了新的文献求助30
5秒前
5秒前
kikyo完成签到,获得积分10
6秒前
6秒前
6秒前
深情安青应助时安采纳,获得10
6秒前
yongkun发布了新的文献求助10
6秒前
王多鱼发布了新的文献求助30
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
karry发布了新的文献求助10
9秒前
能干的向真应助Yuanyuan采纳,获得10
9秒前
王美美发布了新的文献求助10
9秒前
zilhua完成签到,获得积分10
11秒前
11秒前
wasttt完成签到,获得积分10
11秒前
12秒前
12秒前
所所应助许子健采纳,获得10
12秒前
12秒前
三木发布了新的文献求助10
12秒前
嘉1612完成签到,获得积分10
13秒前
科研小白发布了新的文献求助10
13秒前
13秒前
14秒前
天天快乐应助牛轧唐采纳,获得30
14秒前
Chouvikin完成签到,获得积分10
14秒前
fan发布了新的文献求助10
14秒前
15秒前
15秒前
NexusExplorer应助zuizui采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958563
求助须知:如何正确求助?哪些是违规求助? 3504871
关于积分的说明 11120709
捐赠科研通 3236153
什么是DOI,文献DOI怎么找? 1788666
邀请新用户注册赠送积分活动 871279
科研通“疑难数据库(出版商)”最低求助积分说明 802646