材料科学
超级电容器
佩多:嘘
假电容
非阻塞I/O
循环伏安法
电极
复合数
复合材料
化学工程
基质(水族馆)
电化学
图层(电子)
化学
有机化学
催化作用
物理化学
工程类
海洋学
地质学
作者
Mingfa Shao,Juncheng Dong,Ge Zhou,Runqi Ge,Ying Ge,Xiaojing Lv,Mi Ouyang,Cheng Zhang
摘要
Abstract High‐performance composite electrode materials for supercapacitors were developed by two‐step electrochemical deposition of nano‐NiO and poly(3,4‐ethylenedioxythiophene) (PEDOT) on nickel foam (NF). NF is considered an excellent conductive substrate for preparing porous electrode materials due to its high conductivity and porosity. The electrodeposited NiO nanoparticles were uniformly and densely coated on the pore of NF to fill in the internal voids, which provides an abundant active site for the electrodeposition of PEDOT. PEDOT was prepared by simple electrodeposition and was uniformly coated on the substrate surface which has high conductivity and reversible electrochemical redox properties, as well as excellent cyclic stability. The loose surface morphology not only provides abundant redox active sites for electrode material but also contributes the good pseudocapacitance property. As expected, the maximum mass‐specific capacity of PEDOT/NiO@NF composite electrode material can reach up to 129.7 F g −1 at the current density of 1 A g −1 . Moreover, the composite electrode material shows excellent electrochemical cycling stability that the specific capacity has no obvious decay compared with its initial capacity after 200 cycles of cyclic voltammetry and 100 cycles of galvanostatic charge–discharge (GCD). This work demonstrates that the composite material PEDOT/NiO@NF could be a candidate flexibility electrode material for high‐performance supercapacitor applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI