纳米团簇
贵金属
过电位
催化作用
材料科学
分解水
析氧
氧化还原
X射线光电子能谱
电化学
金属
化学工程
无机化学
纳米技术
物理化学
电极
化学
光催化
生物化学
工程类
冶金
作者
Yunchu Zeng,Yan Li,Shubo Tian,Xiaoming Sun
标识
DOI:10.1021/acsami.3c11038
摘要
Noble metal-based electrocatalysts are crucial for efficient acidic water oxidation to develop green hydrogen energy. However, traditional noble metal catalysts loaded on inactive substrates show limited intrinsic catalytic activity, and their large sizes have compromised the atom efficiency of these noble metals. Herein, IrOx nanoclusters with sizes below 2 nm, displaying high atom-utilization efficiency of Ir species, were supported on a redox-active MnO2 nanosubstrate (IrOx/MnO2) with different phases (α-MnO2, δ-MnO2, and ε-MnO2) to explore the optimal combination. Electrochemical measurements showed that IrOx/ε-MnO2 had excellent OER performance with a low overpotential of 225 mV at 10 mA cm-2 in 0.5 M H2SO4, superior to its counterpart, IrOx/α-MnO2 (242 mV) and IrOx/δ-MnO2 (286 mV). Moreover, it also delivered robust stability with no obvious change in operating potential at 10 mA cm-2 during 50 h of continuous operation. Combining the XPS results and Bader charge analysis, we demonstrated that the strong metal-support interactions of IrOx/ε-MnO2 could effectively regulate the electronic structures of the active Ir atoms and stabilize IrOx nanoclusters on supports to suppress their detachment, resulting in significantly enhanced catalytic activity and stability for acidic OER. DFT calculations further supported that the enhanced catalytic OER performance of IrOx/ε-MnO2 could be ascribed to the appropriate strength of interactions between the active Ir sites and the reaction intermediates of the potential-determining step (*O and *OOH) regulated by the redox-active substrates.
科研通智能强力驱动
Strongly Powered by AbleSci AI