亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel intelligent collision avoidance algorithm based on deep reinforcement learning approach for USV

强化学习 避碰 计算机科学 碰撞 更安全的 人工神经网络 无人机 人工智能 模拟 工程类 计算机安全 海洋工程
作者
Yunsheng Fan,Zhe Sun,Guofeng Wang
出处
期刊:Ocean Engineering [Elsevier]
卷期号:287: 115649-115649 被引量:1
标识
DOI:10.1016/j.oceaneng.2023.115649
摘要

Enhancing the efficiency of unmanned surface vehicles (USVs) collision avoidance can yield a significant impact, as it can result in safer navigation and lower energy consumption. This paper introduces a robust approach employing deep reinforcement learning theory to facilitate informed collision avoidance decisions within intricate maritime environments. The restrictions on USV maneuverability and international regulations for preventing collisions at sea are studied and quantified, particularly focusing on the shape and size changes of the ship’s domain caused by USV speed. Based on the deep Q network, an improved methodology is designed, incorporating a noisy network, prioritized experience replay, dueling neural network architecture, and double Q learning, resulting in a highly efficient sampling, exploration, and learning process. To curtail computational expenses associated with USVs, a novel dynamic area restriction technique is proposed. Furthermore, an innovative USV state clipping method is introduced to mitigate training complexities. By utilizing the Unity platform, a virtual environment characterized by complexity and stochasticity is constructed for training and testing the collision avoidance of USVs This novel approach surpasses the performance of the pre-improvement algorithm across multiple collision avoidance effectiveness indicators and performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粽子完成签到,获得积分10
刚刚
Ava应助坚强的严青采纳,获得10
3秒前
9秒前
zhangqin发布了新的文献求助10
15秒前
脑洞疼应助嘎嘎好采纳,获得10
17秒前
FashionBoy应助某人金采纳,获得10
20秒前
21秒前
sy完成签到,获得积分10
21秒前
23秒前
24秒前
27秒前
27秒前
28秒前
丘比特应助童心未泯采纳,获得10
33秒前
儒雅的火龙果完成签到,获得积分10
33秒前
34秒前
39秒前
SYLH完成签到,获得积分0
39秒前
代扁扁完成签到 ,获得积分10
41秒前
41秒前
我是老大应助科研通管家采纳,获得10
47秒前
47秒前
gtgyh完成签到 ,获得积分10
48秒前
50秒前
54秒前
土豪的摩托完成签到 ,获得积分10
56秒前
某人金发布了新的文献求助10
57秒前
思源应助好文章快快来采纳,获得10
1分钟前
洒脱鲲完成签到,获得积分10
1分钟前
善学以致用应助wf采纳,获得10
1分钟前
巫马完成签到 ,获得积分10
1分钟前
坚强的初夏完成签到,获得积分20
1分钟前
光亮如彤完成签到,获得积分10
1分钟前
1分钟前
木穹完成签到,获得积分10
1分钟前
1分钟前
Chillichee应助jugelizi采纳,获得50
1分钟前
1分钟前
1分钟前
mika完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455612
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022844
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387