域代数上的
线性代数
阐述(叙述)
奇异值分解
基质(化学分析)
矩阵分解
数学
矩阵相似性
LU分解
数值线性代数
插值(计算机图形学)
牙石(牙科)
计算机科学
纯数学
算法
线性系统
特征向量
人工智能
图像(数学)
艺术
材料科学
牙科
数学分析
文学类
偏微分方程
复合材料
几何学
量子力学
医学
物理
作者
Stephan Ramon Garcia,Roger A. Horn
标识
DOI:10.1017/9781108938426
摘要
Using a modern matrix-based approach, this rigorous second course in linear algebra helps upper-level undergraduates in mathematics, data science, and the physical sciences transition from basic theory to advanced topics and applications. Its clarity of exposition together with many illustrations, 900+ exercises, and 350 conceptual and numerical examples aid the student's understanding. Concise chapters promote a focused progression through essential ideas. Topics are derived and discussed in detail, including the singular value decomposition, Jordan canonical form, spectral theorem, QR factorization, normal matrices, Hermitian matrices, and positive definite matrices. Each chapter ends with a bullet list summarizing important concepts. New to this edition are chapters on matrix norms and positive matrices, many new sections on topics including interpolation and LU factorization, 300+ more problems, many new examples, and color-enhanced figures. Prerequisites include a first course in linear algebra and basic calculus sequence. Instructor's resources are available.
科研通智能强力驱动
Strongly Powered by AbleSci AI