医学
无线电技术
神经组阅片室
放射科
磁共振成像
接收机工作特性
神经内分泌肿瘤
有效扩散系数
放射性武器
内科学
神经学
精神科
作者
Hai‐Bin Zhu,Haitao Zhu,Jiang Liu,Pei Nie,Juan Hu,Wei Tang,Xiaoyan Zhang,Xiao-Ting Li,Qian Yao,Ying‐Shi Sun
标识
DOI:10.1007/s00330-023-09957-7
摘要
Abstract Objectives To explore the potential of radiomics features to predict the histologic grade of nonfunctioning pancreatic neuroendocrine tumor (NF-PNET) patients using non-contrast sequence based on MRI. Methods Two hundred twenty-eight patients with NF-PNETs undergoing MRI at 5 centers were retrospectively analyzed. Data from center 1 ( n = 115) constituted the training cohort, and data from centers 2–5 ( n = 113) constituted the testing cohort. Radiomics features were extracted from T2-weighted images and the apparent diffusion coefficient. The least absolute shrinkage and selection operator was applied to select the most important features and to develop radiomics signatures. The area under receiver operating characteristic curve (AUC) was performed to assess models. Results Tumor boundary, enhancement homogeneity, and vascular invasion were used to construct the radiological model to stratify NF-PNET patients into grade 1 and 2/3 groups, which yielded AUC of 0.884 and 0.684 in the training and testing groups. A radiomics model including 4 features was constructed, with an AUC of 0.941 and 0.871 in the training and testing cohorts. The fusion model combining the radiomics signature and radiological characteristics showed good performance in the training set (AUC = 0.956) and in the testing set (AUC = 0.864), respectively. Conclusion The developed model that integrates radiomics features with radiological characteristics could be used as a non-invasive, dependable, and accurate tool for the preoperative prediction of grade in NF-PNETs. Clinical relevance statement Our study revealed that the fusion model based on a non-contrast MR sequence can be used to predict the histologic grade before operation. The radiomics model may be a new and effective biological marker in NF-PNETs. Key Points The diagnostic performance of the radiomics model and fusion model was better than that of the model based on clinical information and radiological features in predicting grade 1 and 2/3 of nonfunctioning pancreatic neuroendocrine tumors (NF-PNETs). Good performance of the model in the four external testing cohorts indicated that the radiomics model and fusion model for predicting the grades of NF-PNETs were robust and reliable, indicating the two models could be used in the clinical setting and facilitate the surgeons’ decision on risk stratification. The radiomics features were selected from non-contrast T2-weighted images (T2WI) and diffusion-weighted imaging (DWI) sequence, which means that the administration of contrast agent was not needed in grading the NF-PNETs.
科研通智能强力驱动
Strongly Powered by AbleSci AI