Radiomics analysis from magnetic resonance imaging in predicting the grade of nonfunctioning pancreatic neuroendocrine tumors: a multicenter study

医学 无线电技术 神经组阅片室 放射科 磁共振成像 接收机工作特性 神经内分泌肿瘤 有效扩散系数 放射性武器 内科学 神经学 精神科
作者
Hai‐Bin Zhu,Haitao Zhu,Jiang Liu,Pei Nie,Juan Hu,Wei Tang,Xiaoyan Zhang,Xiao-Ting Li,Qian Yao,Ying‐Shi Sun
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (1): 90-102 被引量:7
标识
DOI:10.1007/s00330-023-09957-7
摘要

Abstract Objectives To explore the potential of radiomics features to predict the histologic grade of nonfunctioning pancreatic neuroendocrine tumor (NF-PNET) patients using non-contrast sequence based on MRI. Methods Two hundred twenty-eight patients with NF-PNETs undergoing MRI at 5 centers were retrospectively analyzed. Data from center 1 ( n = 115) constituted the training cohort, and data from centers 2–5 ( n = 113) constituted the testing cohort. Radiomics features were extracted from T2-weighted images and the apparent diffusion coefficient. The least absolute shrinkage and selection operator was applied to select the most important features and to develop radiomics signatures. The area under receiver operating characteristic curve (AUC) was performed to assess models. Results Tumor boundary, enhancement homogeneity, and vascular invasion were used to construct the radiological model to stratify NF-PNET patients into grade 1 and 2/3 groups, which yielded AUC of 0.884 and 0.684 in the training and testing groups. A radiomics model including 4 features was constructed, with an AUC of 0.941 and 0.871 in the training and testing cohorts. The fusion model combining the radiomics signature and radiological characteristics showed good performance in the training set (AUC = 0.956) and in the testing set (AUC = 0.864), respectively. Conclusion The developed model that integrates radiomics features with radiological characteristics could be used as a non-invasive, dependable, and accurate tool for the preoperative prediction of grade in NF-PNETs. Clinical relevance statement Our study revealed that the fusion model based on a non-contrast MR sequence can be used to predict the histologic grade before operation. The radiomics model may be a new and effective biological marker in NF-PNETs. Key Points The diagnostic performance of the radiomics model and fusion model was better than that of the model based on clinical information and radiological features in predicting grade 1 and 2/3 of nonfunctioning pancreatic neuroendocrine tumors (NF-PNETs). Good performance of the model in the four external testing cohorts indicated that the radiomics model and fusion model for predicting the grades of NF-PNETs were robust and reliable, indicating the two models could be used in the clinical setting and facilitate the surgeons’ decision on risk stratification. The radiomics features were selected from non-contrast T2-weighted images (T2WI) and diffusion-weighted imaging (DWI) sequence, which means that the administration of contrast agent was not needed in grading the NF-PNETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aero完成签到 ,获得积分10
1秒前
123号完成签到,获得积分10
3秒前
充电宝应助TT采纳,获得10
5秒前
6秒前
6秒前
英姑应助荒野星辰采纳,获得10
8秒前
8秒前
YHY完成签到,获得积分10
10秒前
科研通AI5应助魏伯安采纳,获得10
10秒前
caoyy发布了新的文献求助10
10秒前
11秒前
12秒前
张喻235532完成签到,获得积分10
13秒前
失眠虔纹发布了新的文献求助10
14秒前
香蕉觅云应助糊涂的小伙采纳,获得10
14秒前
14秒前
sutharsons应助科研通管家采纳,获得200
16秒前
打打应助科研通管家采纳,获得10
16秒前
axin应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
16秒前
李健应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
17秒前
lu应助科研通管家采纳,获得10
17秒前
17秒前
华仔应助科研通管家采纳,获得10
17秒前
研友_MLJldZ发布了新的文献求助10
17秒前
wys完成签到 ,获得积分10
18秒前
19秒前
michaelvin完成签到,获得积分10
19秒前
学术大白完成签到 ,获得积分10
22秒前
22秒前
SYT完成签到,获得积分10
23秒前
24秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849