多物理
阳极
材料科学
热失控
压力(语言学)
电池(电)
模式(计算机接口)
热的
短路
锂离子电池
锂(药物)
联轴节(管道)
失效模式及影响分析
内阻
涂层
计算机科学
电子工程
电极
纳米技术
有限元法
电压
电气工程
工程类
结构工程
复合材料
功率(物理)
化学
物理
哲学
物理化学
气象学
内分泌学
医学
量子力学
语言学
操作系统
作者
Xudong Duan,Jiani Li,Yikai Jia,Xiang Gao,Li Wang,Jun Xu
标识
DOI:10.1002/advs.202302496
摘要
The characteristics of internal short circuits (ISC) play a critical role in determining the thermal runaway behaviors and associated hazards of lithium-ion batteries (LIBs). However, due to safety concerns and limitations in operando characterization at high state-of-charges (SoCs), the fundamental understanding of stress-driven ISCs under high SOC situations (above 30%) is still lacking. In this study, combined post-mortem characterization and multiphysics modeling is employed to clarify the evolution of ISC modes in LIBs with high SOCs. These findings reveal that the triggered ISC mode is SOC-dependent, with the Al current collector (Al)-Anode coating (An) mode dominant in high SOC situations. Experimentally obtained ISC resistance for the specified ISC mode is then assigned to the corresponding ISC region in the established multiphysics model, allowing for accurate coupling of the electromechanical relationship and prediction of mechanical-electrical-thermal responses of the LIB. Finally, a simple yet effective approach is proposed for avoiding the Al-An mode after battery fractures, achieved through surface notches on electrodes. Results discover novel phenomena for ISC in high SOC cells and reveal the underlying mechanisms, highlighting the importance and potential of battery structural design for developing next-generation robust batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI