Joint Computing, Pushing, and Caching Optimization for Mobile-Edge Computing Networks via Soft Actor–Critic Learning

计算机科学 边缘计算 软计算 移动边缘计算 移动计算 接头(建筑物) 分布式计算 GSM演进的增强数据速率 计算机网络 人工神经网络 人工智能 建筑工程 工程类
作者
Xiangyu Gao,Yaping Sun,Hao Chen,Xiaodong Xu,Shuguang Cui
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 9269-9281 被引量:4
标识
DOI:10.1109/jiot.2023.3323433
摘要

Mobile-edge computing (MEC) networks bring computing and storage capabilities closer to edge devices, which reduces latency and improves network performance. However, to further reduce transmission and computation costs while satisfying user-perceived quality of experience, a joint optimization in computing, pushing, and caching is needed. In this article, we formulate the joint-design problem in MEC networks as an infinite-horizon discounted-cost Markov decision process and solve it using a deep reinforcement learning (DRL)-based framework that enables the dynamic orchestration of computing, pushing, and caching. Through the deep networks embedded in the DRL structure, our framework can implicitly predict user future requests and push or cache the appropriate content to effectively enhance system performance. One issue we encountered when considering three functions collectively is the curse of dimensionality for the action space. To address it, we relaxed the discrete action space into a continuous space and then adopted soft actor–critic learning to solve the optimization problem, followed by utilizing a vector quantization method to obtain the desired discrete action. Additionally, an action correction method was proposed to compress the action space further and accelerate the convergence. Our simulations under the setting of a general single-user, single-server MEC network with dynamic transmission link quality demonstrate that the proposed framework effectively decreases transmission bandwidth and computing cost by proactively pushing data on future demand to users and jointly optimizing the three functions. We also conduct extensive parameter tuning analysis, which shows that our approach outperforms the baselines under various parameter settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanan完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
7秒前
小智完成签到,获得积分10
7秒前
哈哈哈哈发布了新的文献求助10
8秒前
11秒前
黄迪迪发布了新的文献求助10
11秒前
小鱼儿飞飞完成签到,获得积分10
13秒前
D-L@rabbit完成签到,获得积分10
16秒前
17秒前
111发布了新的文献求助10
18秒前
可靠的公爵熊完成签到,获得积分10
19秒前
哈哈哈哈完成签到,获得积分10
20秒前
21秒前
23秒前
Lucas应助老迟到的越泽采纳,获得30
24秒前
25秒前
25秒前
Kane发布了新的文献求助10
26秒前
27秒前
七月夏栀发布了新的文献求助20
28秒前
失眠的巧荷完成签到,获得积分10
28秒前
猪猪hero发布了新的文献求助10
29秒前
30秒前
Oasis发布了新的文献求助10
30秒前
李健应助大美女采纳,获得10
31秒前
胜道完成签到,获得积分20
31秒前
野性的小懒虫完成签到 ,获得积分10
32秒前
乐乐应助MaYue采纳,获得10
32秒前
33秒前
吴彬完成签到,获得积分10
34秒前
brossica发布了新的文献求助10
35秒前
Lucas应助WZQ采纳,获得10
35秒前
心杨发布了新的文献求助10
35秒前
orixero应助天天向上采纳,获得10
35秒前
lime完成签到,获得积分10
36秒前
wanci应助皇甫契采纳,获得10
36秒前
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260332
求助须知:如何正确求助?哪些是违规求助? 2901546
关于积分的说明 8316014
捐赠科研通 2571113
什么是DOI,文献DOI怎么找? 1396847
科研通“疑难数据库(出版商)”最低求助积分说明 653584
邀请新用户注册赠送积分活动 631997