已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Joint Computing, Pushing, and Caching Optimization for Mobile-Edge Computing Networks via Soft Actor–Critic Learning

计算机科学 边缘计算 软计算 移动边缘计算 移动计算 接头(建筑物) 分布式计算 GSM演进的增强数据速率 计算机网络 人工神经网络 人工智能 建筑工程 工程类
作者
Xiangyu Gao,Yaping Sun,Hao Chen,Xiaodong Xu,Shuguang Cui
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 9269-9281 被引量:4
标识
DOI:10.1109/jiot.2023.3323433
摘要

Mobile-edge computing (MEC) networks bring computing and storage capabilities closer to edge devices, which reduces latency and improves network performance. However, to further reduce transmission and computation costs while satisfying user-perceived quality of experience, a joint optimization in computing, pushing, and caching is needed. In this article, we formulate the joint-design problem in MEC networks as an infinite-horizon discounted-cost Markov decision process and solve it using a deep reinforcement learning (DRL)-based framework that enables the dynamic orchestration of computing, pushing, and caching. Through the deep networks embedded in the DRL structure, our framework can implicitly predict user future requests and push or cache the appropriate content to effectively enhance system performance. One issue we encountered when considering three functions collectively is the curse of dimensionality for the action space. To address it, we relaxed the discrete action space into a continuous space and then adopted soft actor–critic learning to solve the optimization problem, followed by utilizing a vector quantization method to obtain the desired discrete action. Additionally, an action correction method was proposed to compress the action space further and accelerate the convergence. Our simulations under the setting of a general single-user, single-server MEC network with dynamic transmission link quality demonstrate that the proposed framework effectively decreases transmission bandwidth and computing cost by proactively pushing data on future demand to users and jointly optimizing the three functions. We also conduct extensive parameter tuning analysis, which shows that our approach outperforms the baselines under various parameter settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助bemyselfelsa采纳,获得10
1秒前
hui完成签到 ,获得积分10
2秒前
raita完成签到,获得积分10
3秒前
Hello应助多情的忆之采纳,获得10
4秒前
学术大亨完成签到,获得积分10
4秒前
andou应助在飘着呢采纳,获得10
6秒前
309完成签到 ,获得积分10
6秒前
儒雅香彤完成签到 ,获得积分10
6秒前
7秒前
8秒前
NexusExplorer应助猫猫叫cat采纳,获得10
9秒前
隐形曼青应助自信的若风采纳,获得10
10秒前
swimming完成签到 ,获得积分10
11秒前
13秒前
13秒前
cc发布了新的文献求助10
14秒前
EvaHo完成签到 ,获得积分10
16秒前
16秒前
ruogu7发布了新的文献求助10
18秒前
领导范儿应助彤彤采纳,获得10
19秒前
自信念柏完成签到,获得积分10
20秒前
24秒前
sun完成签到,获得积分10
24秒前
Fearless完成签到,获得积分10
24秒前
gy发布了新的文献求助10
25秒前
水凝胶发布了新的文献求助10
27秒前
28秒前
无花果应助罗钦采纳,获得10
30秒前
府于杰发布了新的文献求助10
30秒前
坦率灵槐应助严大师采纳,获得10
31秒前
听话的巧荷完成签到 ,获得积分10
31秒前
35秒前
马佳凯完成签到,获得积分10
36秒前
着急的千山完成签到,获得积分10
36秒前
饱满冷卉完成签到,获得积分10
37秒前
gy关闭了gy文献求助
37秒前
something完成签到,获得积分10
40秒前
唐糖发布了新的文献求助10
41秒前
WTT完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300957
求助须知:如何正确求助?哪些是违规求助? 4448753
关于积分的说明 13846748
捐赠科研通 4334559
什么是DOI,文献DOI怎么找? 2379746
邀请新用户注册赠送积分活动 1374804
关于科研通互助平台的介绍 1340516