Joint Computing, Pushing, and Caching Optimization for Mobile-Edge Computing Networks via Soft Actor–Critic Learning

计算机科学 边缘计算 软计算 移动边缘计算 移动计算 接头(建筑物) 分布式计算 GSM演进的增强数据速率 计算机网络 人工神经网络 人工智能 建筑工程 工程类
作者
Xiangyu Gao,Yaping Sun,Hao Chen,Xiaodong Xu,Shuguang Cui
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 9269-9281 被引量:4
标识
DOI:10.1109/jiot.2023.3323433
摘要

Mobile-edge computing (MEC) networks bring computing and storage capabilities closer to edge devices, which reduces latency and improves network performance. However, to further reduce transmission and computation costs while satisfying user-perceived quality of experience, a joint optimization in computing, pushing, and caching is needed. In this article, we formulate the joint-design problem in MEC networks as an infinite-horizon discounted-cost Markov decision process and solve it using a deep reinforcement learning (DRL)-based framework that enables the dynamic orchestration of computing, pushing, and caching. Through the deep networks embedded in the DRL structure, our framework can implicitly predict user future requests and push or cache the appropriate content to effectively enhance system performance. One issue we encountered when considering three functions collectively is the curse of dimensionality for the action space. To address it, we relaxed the discrete action space into a continuous space and then adopted soft actor–critic learning to solve the optimization problem, followed by utilizing a vector quantization method to obtain the desired discrete action. Additionally, an action correction method was proposed to compress the action space further and accelerate the convergence. Our simulations under the setting of a general single-user, single-server MEC network with dynamic transmission link quality demonstrate that the proposed framework effectively decreases transmission bandwidth and computing cost by proactively pushing data on future demand to users and jointly optimizing the three functions. We also conduct extensive parameter tuning analysis, which shows that our approach outperforms the baselines under various parameter settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy发布了新的文献求助10
1秒前
wym发布了新的文献求助30
3秒前
传奇3应助风中的爆米花采纳,获得10
4秒前
4秒前
CipherSage应助菜菜泽采纳,获得10
5秒前
阿洋完成签到,获得积分20
5秒前
阿洋发布了新的文献求助10
9秒前
上官可可发布了新的文献求助10
9秒前
wy完成签到,获得积分10
9秒前
duyitao关注了科研通微信公众号
10秒前
11秒前
Frank完成签到,获得积分10
11秒前
guard发布了新的文献求助10
11秒前
U9A发布了新的文献求助10
12秒前
13秒前
hh完成签到,获得积分10
14秒前
hony完成签到,获得积分10
15秒前
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得20
17秒前
ED应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
Ricey应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
henxiangai应助科研通管家采纳,获得30
17秒前
李健应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
18秒前
ED应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
奋斗的延恶完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712