Joint Computing, Pushing, and Caching Optimization for Mobile-Edge Computing Networks via Soft Actor–Critic Learning

计算机科学 边缘计算 软计算 移动边缘计算 移动计算 接头(建筑物) 分布式计算 GSM演进的增强数据速率 计算机网络 人工神经网络 人工智能 建筑工程 工程类
作者
Xiangyu Gao,Yaping Sun,Hao Chen,Xiaodong Xu,Shuguang Cui
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 9269-9281 被引量:4
标识
DOI:10.1109/jiot.2023.3323433
摘要

Mobile-edge computing (MEC) networks bring computing and storage capabilities closer to edge devices, which reduces latency and improves network performance. However, to further reduce transmission and computation costs while satisfying user-perceived quality of experience, a joint optimization in computing, pushing, and caching is needed. In this article, we formulate the joint-design problem in MEC networks as an infinite-horizon discounted-cost Markov decision process and solve it using a deep reinforcement learning (DRL)-based framework that enables the dynamic orchestration of computing, pushing, and caching. Through the deep networks embedded in the DRL structure, our framework can implicitly predict user future requests and push or cache the appropriate content to effectively enhance system performance. One issue we encountered when considering three functions collectively is the curse of dimensionality for the action space. To address it, we relaxed the discrete action space into a continuous space and then adopted soft actor–critic learning to solve the optimization problem, followed by utilizing a vector quantization method to obtain the desired discrete action. Additionally, an action correction method was proposed to compress the action space further and accelerate the convergence. Our simulations under the setting of a general single-user, single-server MEC network with dynamic transmission link quality demonstrate that the proposed framework effectively decreases transmission bandwidth and computing cost by proactively pushing data on future demand to users and jointly optimizing the three functions. We also conduct extensive parameter tuning analysis, which shows that our approach outperforms the baselines under various parameter settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧汉堡完成签到 ,获得积分10
2秒前
2秒前
282387287完成签到,获得积分10
2秒前
2秒前
叶95完成签到 ,获得积分10
3秒前
DoctorHao发布了新的文献求助10
5秒前
无花果应助wade2016采纳,获得10
6秒前
粥游天下发布了新的文献求助10
6秒前
烟花应助碧蓝的老鼠采纳,获得10
6秒前
湛刘佳发布了新的文献求助10
7秒前
7秒前
小蘑菇应助刻苦的煎蛋采纳,获得10
8秒前
大个应助狂奔的酸笋采纳,获得10
8秒前
东方应助xiaojian_291采纳,获得50
9秒前
科研通AI5应助unique采纳,获得10
10秒前
10秒前
DoctorHao完成签到,获得积分10
11秒前
11秒前
hakunamatata完成签到,获得积分10
11秒前
kk发布了新的文献求助10
13秒前
14秒前
kai_完成签到,获得积分10
15秒前
17秒前
17秒前
艾登登发布了新的文献求助10
17秒前
Lighten完成签到 ,获得积分10
18秒前
kk完成签到,获得积分10
22秒前
高兴的海亦完成签到,获得积分10
23秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
24秒前
unique发布了新的文献求助10
26秒前
严冰蝶完成签到 ,获得积分10
26秒前
30秒前
小孙失策了完成签到,获得积分10
30秒前
30秒前
Meng完成签到,获得积分10
32秒前
思源应助12采纳,获得10
32秒前
33秒前
Time发布了新的文献求助10
34秒前
科研通AI5应助忧郁小刺猬采纳,获得10
35秒前
可盐够发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783