Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study

列线图 医学 接收机工作特性 无线电技术 乳腺癌 恶性肿瘤 放射科 乳房成像 队列 置信区间 双雷达 癌症 肿瘤科 内科学 乳腺摄影术
作者
Peiyan Wu,Yan Jiang,Hanshuo Xing,Wenbo Song,Xin‐Wu Cui,Xing Wu,Guoping Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (17): 175023-175023 被引量:2
标识
DOI:10.1088/1361-6560/acec2d
摘要

Background. Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC).Methods. The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis.Results. The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973-0.993), 0.972 (0.952-0.993), 0.897 (0.823-0.971), and 0.993 (0.977-1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility.Conclusion. The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository athttps://github.com/wupeiyan/MDLRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助一个小鸡腿采纳,获得10
刚刚
刚刚
英俊的铭应助AI_S采纳,获得10
刚刚
1秒前
1秒前
小俊发布了新的文献求助10
1秒前
bc应助Angel采纳,获得30
1秒前
杨好圆完成签到,获得积分10
1秒前
Xie完成签到,获得积分10
1秒前
Stone发布了新的文献求助10
1秒前
原野小年发布了新的文献求助10
2秒前
一十六发布了新的文献求助10
2秒前
大白牛完成签到,获得积分10
4秒前
叮当喵发布了新的文献求助10
4秒前
lewis17发布了新的文献求助10
4秒前
卢秋宇发布了新的文献求助10
4秒前
5秒前
5秒前
小豆发布了新的文献求助10
5秒前
所所应助伯赏夜南采纳,获得10
5秒前
6秒前
Orange应助冷酷的尔琴采纳,获得10
6秒前
英姑应助从容问雁采纳,获得10
6秒前
6秒前
暖秋发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
原野小年完成签到,获得积分10
8秒前
稳重蜗牛完成签到,获得积分10
8秒前
帅气书白完成签到,获得积分10
9秒前
edtaa发布了新的文献求助10
9秒前
DamonChen发布了新的文献求助10
9秒前
无心的砖家完成签到,获得积分10
9秒前
落后十八发布了新的文献求助20
9秒前
sheep完成签到,获得积分10
9秒前
SciGPT应助雨雨雨采纳,获得10
10秒前
直率诗柳完成签到,获得积分10
10秒前
刚国忠完成签到,获得积分20
10秒前
屈昭阳完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836