Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study

列线图 医学 接收机工作特性 无线电技术 乳腺癌 恶性肿瘤 放射科 乳房成像 队列 置信区间 双雷达 癌症 肿瘤科 内科学 乳腺摄影术
作者
Peiyan Wu,Yan Jiang,Hanshuo Xing,Wenbo Song,Xin‐Wu Cui,Xing Wu,Guoping Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (17): 175023-175023 被引量:2
标识
DOI:10.1088/1361-6560/acec2d
摘要

Background. Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC).Methods. The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis.Results. The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973-0.993), 0.972 (0.952-0.993), 0.897 (0.823-0.971), and 0.993 (0.977-1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility.Conclusion. The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository athttps://github.com/wupeiyan/MDLRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小天才完成签到,获得积分10
刚刚
chopin完成签到,获得积分20
1秒前
1秒前
研友_VZG7GZ应助大萌采纳,获得10
1秒前
大模型应助jammszs采纳,获得10
1秒前
2秒前
平常树叶完成签到,获得积分10
2秒前
Obliviate完成签到,获得积分10
2秒前
chenyou完成签到,获得积分10
3秒前
pb完成签到,获得积分10
4秒前
ying完成签到,获得积分10
4秒前
4秒前
xiaoxu完成签到,获得积分10
4秒前
运气爆彭完成签到,获得积分10
5秒前
传奇3应助Kleen采纳,获得10
5秒前
隐形的星月完成签到,获得积分10
5秒前
煎饼果子完成签到 ,获得积分10
5秒前
缓慢千易完成签到,获得积分10
6秒前
qiuziyun完成签到,获得积分10
6秒前
LmyHusband完成签到,获得积分10
6秒前
Jincen发布了新的文献求助10
7秒前
研友_24789完成签到,获得积分10
7秒前
文献啊文献完成签到,获得积分10
7秒前
HMO_eee发布了新的文献求助10
7秒前
Kelly完成签到,获得积分10
8秒前
大模型应助布丁圆团采纳,获得10
9秒前
不想科研完成签到,获得积分10
9秒前
宣以晴完成签到,获得积分10
10秒前
雨辰完成签到 ,获得积分10
10秒前
小瓢虫完成签到 ,获得积分10
10秒前
俭朴的乐巧完成签到 ,获得积分10
10秒前
littlejin完成签到 ,获得积分10
10秒前
薛定谔的猫爱摸鱼完成签到,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
可靠的难胜完成签到,获得积分10
12秒前
魔女完成签到,获得积分10
12秒前
慈祥的花瓣完成签到,获得积分10
12秒前
雪花完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977