亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study

列线图 医学 接收机工作特性 无线电技术 乳腺癌 恶性肿瘤 放射科 乳房成像 队列 置信区间 双雷达 癌症 肿瘤科 内科学 乳腺摄影术
作者
Peiyan Wu,Yan Jiang,Hanshuo Xing,Wenbo Song,Xin‐Wu Cui,Xing Wu,Guoping Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (17): 175023-175023 被引量:2
标识
DOI:10.1088/1361-6560/acec2d
摘要

Background. Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC).Methods. The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis.Results. The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973-0.993), 0.972 (0.952-0.993), 0.897 (0.823-0.971), and 0.993 (0.977-1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility.Conclusion. The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository athttps://github.com/wupeiyan/MDLRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
Dirsch应助科研通管家采纳,获得10
刚刚
12秒前
有人发布了新的文献求助200
18秒前
曾经白亦完成签到 ,获得积分10
40秒前
fufufu123完成签到 ,获得积分10
1分钟前
周周完成签到 ,获得积分10
1分钟前
予秋完成签到,获得积分10
2分钟前
予秋发布了新的文献求助10
2分钟前
故意不上钩的鱼应助予秋采纳,获得10
3分钟前
执着的蜗牛应助予秋采纳,获得10
3分钟前
dynamoo应助予秋采纳,获得10
3分钟前
共享精神应助科研通管家采纳,获得20
4分钟前
Dirsch应助科研通管家采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
小奋青完成签到 ,获得积分10
4分钟前
NexusExplorer应助科研通管家采纳,获得10
6分钟前
最落幕完成签到 ,获得积分10
6分钟前
MchemG完成签到,获得积分0
6分钟前
张贵虎完成签到 ,获得积分10
6分钟前
小王子完成签到 ,获得积分10
6分钟前
7分钟前
情怀应助平常的乘云采纳,获得10
7分钟前
7分钟前
7分钟前
浮游应助科研通管家采纳,获得10
8分钟前
8分钟前
lzl008完成签到 ,获得积分10
9分钟前
lzl007完成签到 ,获得积分10
9分钟前
科目三应助科研通管家采纳,获得10
10分钟前
桐桐应助科研通管家采纳,获得10
10分钟前
10分钟前
Sg发布了新的文献求助10
10分钟前
Sg完成签到,获得积分10
10分钟前
Lucas应助平常的乘云采纳,获得10
10分钟前
10分钟前
10分钟前
顾矜应助爱思考的小笨笨采纳,获得10
10分钟前
丘比特应助QI采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292746
求助须知:如何正确求助?哪些是违规求助? 4443169
关于积分的说明 13830930
捐赠科研通 4326618
什么是DOI,文献DOI怎么找? 2375007
邀请新用户注册赠送积分活动 1370315
关于科研通互助平台的介绍 1334896