Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study

列线图 医学 接收机工作特性 无线电技术 乳腺癌 恶性肿瘤 放射科 乳房成像 队列 置信区间 双雷达 癌症 肿瘤科 内科学 乳腺摄影术
作者
Peiyan Wu,Yuming Jiang,Huanlai Xing,Wenbo Song,Xin-Wu Cui,Xinglong Wu,Guoping Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (17): 175023-175023
标识
DOI:10.1088/1361-6560/acec2d
摘要

Abstract Background . Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC). Methods . The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis. Results . The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973–0.993), 0.972 (0.952–0.993), 0.897 (0.823–0.971), and 0.993 (0.977–1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility. Conclusion . The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository at https://github.com/wupeiyan/MDLRN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷语发布了新的文献求助10
1秒前
邹友亮发布了新的文献求助10
2秒前
天峰完成签到,获得积分10
2秒前
龚明洋1完成签到,获得积分10
3秒前
爆爆完成签到,获得积分10
3秒前
汉堡包应助郝宝真采纳,获得10
4秒前
NexusExplorer应助自信的海燕采纳,获得10
4秒前
酷炫大白完成签到,获得积分10
5秒前
imbecile完成签到,获得积分10
5秒前
酷波er应助激昂的背包采纳,获得10
5秒前
共享精神应助简单如容采纳,获得10
6秒前
6秒前
ddd完成签到,获得积分10
7秒前
7秒前
无花果应助淡淡的小蜜蜂采纳,获得10
7秒前
小山隹完成签到,获得积分10
8秒前
养一只鱼完成签到 ,获得积分10
8秒前
范仪彬完成签到,获得积分20
8秒前
通通通完成签到,获得积分10
8秒前
芈冖发布了新的文献求助10
9秒前
雨诺完成签到,获得积分10
9秒前
田様应助yi采纳,获得10
10秒前
11秒前
田様应助Ly采纳,获得10
11秒前
Ava应助邹友亮采纳,获得10
11秒前
范仪彬发布了新的文献求助10
12秒前
传奇3应助美满丹亦采纳,获得10
14秒前
yingying完成签到,获得积分20
14秒前
15秒前
Jasper应助简单如容采纳,获得30
15秒前
16秒前
梅子完成签到 ,获得积分10
16秒前
B1n发布了新的文献求助10
17秒前
无花果应助魏晓林采纳,获得10
17秒前
18秒前
大陆完成签到,获得积分10
18秒前
chezi发布了新的文献求助10
19秒前
19秒前
CodeCraft应助shelly采纳,获得10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813685
关于积分的说明 7901577
捐赠科研通 2473296
什么是DOI,文献DOI怎么找? 1316715
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175