Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study

列线图 医学 接收机工作特性 无线电技术 乳腺癌 恶性肿瘤 放射科 乳房成像 队列 置信区间 双雷达 癌症 肿瘤科 内科学 乳腺摄影术
作者
Peiyan Wu,Yan Jiang,Hanshuo Xing,Wenbo Song,Xin‐Wu Cui,Xing Wu,Guoping Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (17): 175023-175023 被引量:2
标识
DOI:10.1088/1361-6560/acec2d
摘要

Background. Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC).Methods. The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis.Results. The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973-0.993), 0.972 (0.952-0.993), 0.897 (0.823-0.971), and 0.993 (0.977-1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility.Conclusion. The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository athttps://github.com/wupeiyan/MDLRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XD完成签到,获得积分10
2秒前
流星雨完成签到 ,获得积分10
2秒前
酷炫抽屉完成签到 ,获得积分10
3秒前
淡定的美女完成签到,获得积分10
5秒前
6秒前
7秒前
haoliangshi发布了新的文献求助10
8秒前
生动白开水完成签到,获得积分10
9秒前
背后的访冬完成签到,获得积分10
9秒前
cyp发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
所所应助樊夏岚采纳,获得10
11秒前
LVVVB完成签到,获得积分10
12秒前
热情蜗牛完成签到 ,获得积分10
15秒前
啦啦啦完成签到 ,获得积分10
16秒前
几一昂完成签到 ,获得积分10
16秒前
踏实幻巧完成签到,获得积分10
17秒前
南宫映榕完成签到,获得积分10
17秒前
李小刀睡不醒完成签到 ,获得积分10
18秒前
YT完成签到 ,获得积分10
18秒前
19秒前
情怀应助努力飞的麻雀采纳,获得10
19秒前
勤劳的白晴完成签到,获得积分10
20秒前
CHEN完成签到,获得积分10
21秒前
张嘉芬发布了新的文献求助10
23秒前
银海里的玫瑰_完成签到 ,获得积分10
24秒前
摸鱼主编magazine完成签到,获得积分10
26秒前
cyp完成签到,获得积分10
26秒前
涵涵涵完成签到,获得积分10
27秒前
27秒前
可爱的函函应助ycd采纳,获得10
28秒前
666888完成签到 ,获得积分10
28秒前
万万完成签到 ,获得积分10
28秒前
29秒前
CipherSage应助勤劳的白晴采纳,获得10
29秒前
wend完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
难过的溪流完成签到 ,获得积分10
30秒前
光学工程小学完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418727
求助须知:如何正确求助?哪些是违规求助? 4534376
关于积分的说明 14143603
捐赠科研通 4450594
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433030
关于科研通互助平台的介绍 1410456