Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study

列线图 医学 接收机工作特性 无线电技术 乳腺癌 恶性肿瘤 放射科 乳房成像 队列 置信区间 双雷达 癌症 肿瘤科 内科学 乳腺摄影术
作者
Peiyan Wu,Yan Jiang,Hanshuo Xing,Wenbo Song,Xin‐Wu Cui,Xing Wu,Guoping Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (17): 175023-175023 被引量:2
标识
DOI:10.1088/1361-6560/acec2d
摘要

Background. Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC).Methods. The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis.Results. The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973-0.993), 0.972 (0.952-0.993), 0.897 (0.823-0.971), and 0.993 (0.977-1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility.Conclusion. The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository athttps://github.com/wupeiyan/MDLRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
华仔应助HJJHJH采纳,获得10
刚刚
王宇航发布了新的文献求助10
1秒前
勤劳白翠发布了新的文献求助10
1秒前
hh完成签到,获得积分10
1秒前
陈cxz发布了新的文献求助10
1秒前
1秒前
vv完成签到,获得积分10
2秒前
和风晓月完成签到,获得积分10
2秒前
林冲发布了新的文献求助10
2秒前
Gaoge完成签到,获得积分10
3秒前
ks_Mo发布了新的文献求助10
3秒前
哈哈哈啊完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
甜蜜凡波完成签到,获得积分10
4秒前
舒服的灰狼完成签到,获得积分10
4秒前
王金金发布了新的文献求助10
5秒前
月月发布了新的文献求助10
5秒前
5秒前
ABCDE完成签到,获得积分10
5秒前
曲意风华完成签到,获得积分10
5秒前
6秒前
6秒前
卢健辉完成签到,获得积分10
6秒前
GH发布了新的文献求助10
6秒前
xwwdcg完成签到,获得积分10
7秒前
7秒前
wang发布了新的文献求助10
8秒前
Guochunbao发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
芥末发布了新的文献求助10
9秒前
Owen应助zxf采纳,获得10
9秒前
wuran完成签到,获得积分10
9秒前
9秒前
冷酷男人完成签到,获得积分10
9秒前
4892应助mmyhn采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284