Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study

列线图 医学 接收机工作特性 无线电技术 乳腺癌 恶性肿瘤 放射科 乳房成像 队列 置信区间 双雷达 癌症 肿瘤科 内科学 乳腺摄影术
作者
Peiyan Wu,Yan Jiang,Hanshuo Xing,Wenbo Song,Xin‐Wu Cui,Xing Wu,Guoping Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (17): 175023-175023 被引量:2
标识
DOI:10.1088/1361-6560/acec2d
摘要

Background. Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC).Methods. The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis.Results. The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973-0.993), 0.972 (0.952-0.993), 0.897 (0.823-0.971), and 0.993 (0.977-1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility.Conclusion. The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository athttps://github.com/wupeiyan/MDLRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助欣喜念桃采纳,获得10
1秒前
木之木完成签到,获得积分10
1秒前
2秒前
2秒前
跳跃的洪纲完成签到,获得积分10
2秒前
儒雅从安发布了新的文献求助20
2秒前
Orange应助青年才俊采纳,获得10
2秒前
苏卓文发布了新的文献求助10
2秒前
3秒前
4秒前
远方发布了新的文献求助10
4秒前
4秒前
虚拟完成签到,获得积分20
4秒前
xun应助xiaoxiao采纳,获得30
4秒前
4秒前
上官若男应助Starshine采纳,获得10
5秒前
qiqi完成签到,获得积分10
5秒前
6秒前
炙热初蓝完成签到 ,获得积分10
6秒前
英俊的铭应助不吃别夹采纳,获得10
7秒前
7秒前
bkagyin应助123采纳,获得10
9秒前
qiqi发布了新的文献求助10
9秒前
abner发布了新的文献求助10
10秒前
科研通AI6应助DAX采纳,获得10
10秒前
隐形曼青应助WN采纳,获得30
11秒前
烟花应助远方采纳,获得10
12秒前
lin完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
顾矜应助典雅又夏采纳,获得10
13秒前
粥粥完成签到,获得积分10
13秒前
芒果布丁完成签到 ,获得积分10
13秒前
13秒前
RHLVE应助qiqi采纳,获得10
13秒前
14秒前
Vicky完成签到,获得积分10
14秒前
虚拟发布了新的文献求助10
15秒前
苏梓卿完成签到,获得积分10
15秒前
Moihan完成签到,获得积分10
15秒前
bio完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
小鼠脑外侧隔核的全脑投射研究 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Signals, Systems, and Signal Processing 400
Sociologies et cosmopolitisme méthodologique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4619685
求助须知:如何正确求助?哪些是违规求助? 4021341
关于积分的说明 12448948
捐赠科研通 3705369
什么是DOI,文献DOI怎么找? 2043425
邀请新用户注册赠送积分活动 1075699
科研通“疑难数据库(出版商)”最低求助积分说明 958935