Multi-Scale Tokens-Aware Transformer Network for Multi-Region and Multi-Sequence MR-to-CT Synthesis in a Single Model

计算机科学 人工智能 变压器 模式识别(心理学) 卷积神经网络 分类器(UML) 计算机视觉 电压 量子力学 物理
作者
Liming Zhong,Zeli Chen,Hai Shu,Kaiyi Zheng,Yin Li,Weicui Chen,Yuankui Wu,Jianhua Ma,Qianjin Feng,Wei Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (2): 794-806 被引量:9
标识
DOI:10.1109/tmi.2023.3321064
摘要

The superiority of magnetic resonance (MR)-only radiotherapy treatment planning (RTP) has been well demonstrated, benefiting from the synthesis of computed tomography (CT) images which supplements electron density and eliminates the errors of multi-modal images registration. An increasing number of methods has been proposed for MR-to-CT synthesis. However, synthesizing CT images of different anatomical regions from MR images with different sequences using a single model is challenging due to the large differences between these regions and the limitations of convolutional neural networks in capturing global context information. In this paper, we propose a multi-scale tokens-aware Transformer network (MTT-Net) for multi-region and multi-sequence MR-to-CT synthesis in a single model. Specifically, we develop a multi-scale image tokens Transformer to capture multi-scale global spatial information between different anatomical structures in different regions. Besides, to address the limited attention areas of tokens in Transformer, we introduce a multi-shape window self-attention into Transformer to enlarge the receptive fields for learning the multi-directional spatial representations. Moreover, we adopt a domain classifier in generator to introduce the domain knowledge for distinguishing the MR images of different regions and sequences. The proposed MTT-Net is evaluated on a multi-center dataset and an unseen region, and remarkable performance was achieved with MAE of 69.33 ± 10.39 HU, SSIM of 0.778 ± 0.028, and PSNR of 29.04 ± 1.32 dB in head & neck region, and MAE of 62.80 ± 7.65 HU, SSIM of 0.617 ± 0.058 and PSNR of 25.94 ± 1.02 dB in abdomen region. The proposed MTT-Net outperforms state-of-the-art methods in both accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
wang发布了新的文献求助10
1秒前
Sophiaye发布了新的文献求助30
2秒前
2秒前
将将发布了新的文献求助10
6秒前
6秒前
7秒前
hao发布了新的文献求助10
7秒前
大憨憨完成签到 ,获得积分10
8秒前
嗝嗝完成签到,获得积分10
9秒前
战斗暴龙兽完成签到,获得积分10
10秒前
PositiveJugend完成签到,获得积分10
11秒前
yunyii发布了新的文献求助10
11秒前
12秒前
wang完成签到,获得积分20
14秒前
14秒前
科研通AI2S应助将将采纳,获得10
15秒前
俊逸沛山完成签到,获得积分10
15秒前
pears发布了新的文献求助10
15秒前
岳小龙完成签到 ,获得积分10
16秒前
狗猪仔发布了新的文献求助10
17秒前
mariawang发布了新的文献求助10
18秒前
肉丝发布了新的文献求助10
19秒前
FashionBoy应助科研大哈巴采纳,获得10
19秒前
Sophiaye完成签到,获得积分20
20秒前
七月完成签到 ,获得积分10
21秒前
Doc完成签到,获得积分10
21秒前
麦当喽完成签到 ,获得积分10
23秒前
汉堡包应助yunyii采纳,获得10
24秒前
24秒前
打打应助pears采纳,获得10
24秒前
25秒前
Ring完成签到 ,获得积分10
25秒前
25秒前
务实青筠发布了新的文献求助10
26秒前
wanci应助我是能跌采纳,获得10
26秒前
NexusExplorer应助wang采纳,获得10
27秒前
肉丝完成签到,获得积分10
27秒前
29秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
Andrew Duncan Senior: Physician of the Enlightenment 240
University-Industry Collaboration and the Success Mechanism of Collaboration 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681317
求助须知:如何正确求助?哪些是违规求助? 3233325
关于积分的说明 9807830
捐赠科研通 2944736
什么是DOI,文献DOI怎么找? 1614922
邀请新用户注册赠送积分活动 762388
科研通“疑难数据库(出版商)”最低求助积分说明 737381