A new flow-based centrality method for identifying statistically significant centers

中心性 北京 城市群 中间性中心性 地理 人口 地图学 流量(数学) 区域科学 计算机科学 中国 计量经济学 经济地理学 运输工程 统计 数学 工程类 人口学 社会学 考古 几何学
作者
Xi Wang,Tao Pei,Ci Song,Jie Chen,Hua Shu,Chen Xiao,Mingbo Wu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:99: 104984-104984 被引量:2
标识
DOI:10.1016/j.scs.2023.104984
摘要

Quantifying the centrality of places and identifying centers constitute the basis for assessing the urban spatial structure, which is essential for sustainable spatial planning. Both the existence and intensity of linkages contribute to the centrality of places. However, few centrality measures consider both aspects simultaneously. Additionally, the identification of centers often relies on specified minimum thresholds, which is subjective and arbitrary. To overcome these limitations, we propose a new flow-based centrality measure (MX-degree) inspired by the scientist's H-index, which effectively integrates flow volume and flow diversity automatically. Furthermore, we design a novel permutation strategy to test the significance of the MX-degree to identify the statistically significant centers. To demonstrate the validity of our method, we conduct a case study quantifying city centrality in China's two urban agglomerations: Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD), based on population flow data. Specifically, the MX-degree outperforms other common centrality measures in reflecting cities' socioeconomic development levels. Significance tests show that the BTH region is dominated by the only statistically significant central city — Beijing, while the YRD region is more polycentric but with an uneven spatial distribution of central cities. Several implications for regional planning by the comparison of spatial structures are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助bottle采纳,获得10
1秒前
cbf发布了新的文献求助10
1秒前
1秒前
YMP发布了新的文献求助10
1秒前
1秒前
AU完成签到 ,获得积分10
2秒前
科研通AI5应助qidian采纳,获得10
2秒前
123完成签到,获得积分10
2秒前
万能图书馆应助xx采纳,获得10
2秒前
2秒前
冷静的依瑶完成签到,获得积分10
2秒前
tree发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
shi hui应助dwxmax采纳,获得10
3秒前
木南发布了新的文献求助10
3秒前
4秒前
feng发布了新的文献求助10
4秒前
小小芮关注了科研通微信公众号
5秒前
小憨瀚关注了科研通微信公众号
5秒前
Mo完成签到,获得积分10
5秒前
6秒前
爱吃辣发布了新的文献求助10
6秒前
poohpooh完成签到,获得积分20
6秒前
研友_Z7XY28发布了新的文献求助10
6秒前
7秒前
8秒前
JIE发布了新的文献求助10
8秒前
8秒前
8秒前
banana完成签到 ,获得积分10
8秒前
YMP完成签到,获得积分10
8秒前
9秒前
不安青牛应助poohpooh采纳,获得10
9秒前
Akim应助爱听歌的白开水采纳,获得10
9秒前
派大星发布了新的文献求助10
10秒前
10秒前
wanci应助木南采纳,获得10
10秒前
丘比特应助桃桃真知棒采纳,获得10
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481226
求助须知:如何正确求助?哪些是违规求助? 3071419
关于积分的说明 9122057
捐赠科研通 2763201
什么是DOI,文献DOI怎么找? 1516316
邀请新用户注册赠送积分活动 701479
科研通“疑难数据库(出版商)”最低求助积分说明 700319