A Mitochondrial Nanoguard Modulates Redox Homeostasis and Bioenergy Metabolism in Diabetic Peripheral Neuropathy

药理学 三磷酸腺苷 活性氧 线粒体 化学 生物化学 生物
作者
Yangxue Yao,Xiaoyu Lei,Sheng Wang,Geru Zhang,Hongxiao Huang,Yuxuan Zhao,Sirong Shi,Yang Gao,Xiaoxiao Cai,Shaojingya Gao,Yunfeng Lin
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (22): 22334-22354 被引量:9
标识
DOI:10.1021/acsnano.3c04462
摘要

As a major late complication of diabetes, diabetic peripheral neuropathy (DPN) is the primary reason for amputation. Nevertheless, there are no wonder drugs available. Regulating dysfunctional mitochondria is a key therapeutic target for DPN. Resveratrol (RSV) is widely proven to guard mitochondria, yet the unsatisfactory bioavailability restricts its clinical application. Tetrahedral framework nucleic acids (tFNAs) are promising carriers due to their excellent cell entrance efficiency, biological safety, and structure editability. Here, RSV was intercalated into tFNAs to form the tFNAs-RSV complexes. tFNAs-RSV achieved enhanced stability, bioavailability, and biocompatibility compared with tFNAs and RSV alone. With its treatment, reactive oxygen species (ROS) production was minimized and reductases were activated in an in vitro model of DPN. Besides, respiratory function and adenosine triphosphate (ATP) production were enhanced. tFNAs-RSV also exhibited favorable therapeutic effects on sensory dysfunction, neurovascular deterioration, demyelination, and neuroapoptosis in DPN mice. Metabolomics analysis revealed that redox regulation and energy metabolism were two principal mechanisms that were impacted during the process. Comprehensive inspections indicated that tFNAs-RSV inhibited nitrosation and oxidation and activated reductase and respiratory chain. In sum, tFNAs-RSV served as a mitochondrial nanoguard (mito-guard), representing a viable drilling target for clinical drug development of DPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hug完成签到,获得积分0
刚刚
鸣隐发布了新的文献求助10
刚刚
barrychow完成签到,获得积分10
刚刚
细腻的梦之完成签到,获得积分10
刚刚
1秒前
Upupupppp发布了新的文献求助10
2秒前
小新同学发布了新的文献求助10
3秒前
3秒前
田様应助研友_ZAe4qZ采纳,获得10
3秒前
kmario完成签到,获得积分10
4秒前
笃定发布了新的文献求助10
4秒前
搜集达人应助xing采纳,获得10
4秒前
无辜豆芽发布了新的文献求助10
4秒前
默默尔安完成签到 ,获得积分10
5秒前
5秒前
xixi完成签到,获得积分10
5秒前
SU15964707813完成签到,获得积分10
5秒前
6秒前
6秒前
太阳完成签到 ,获得积分10
7秒前
7秒前
斯文败类应助干净的新梅采纳,获得10
7秒前
8秒前
科研通AI2S应助hahahah采纳,获得10
8秒前
8秒前
9秒前
情怀应助Eason采纳,获得10
10秒前
11秒前
Limanman完成签到,获得积分10
11秒前
11秒前
12秒前
orixero应助番薯采纳,获得10
12秒前
Jeffery发布了新的文献求助10
12秒前
Leung发布了新的文献求助10
12秒前
12秒前
13秒前
NIUBEN发布了新的文献求助10
13秒前
NexusExplorer应助背后的傥采纳,获得10
13秒前
斯文败类应助心行采纳,获得10
13秒前
聪明白羊完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144039
求助须知:如何正确求助?哪些是违规求助? 2795729
关于积分的说明 7816229
捐赠科研通 2451740
什么是DOI,文献DOI怎么找? 1304659
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419