Evaluation of Gastric Cancer Using Explainable AI Techniques

人工智能 深度学习 破译 计算机科学 癌症 机器学习 领域(数学) 癌症检测 精确性和召回率 医学 生物信息学 数学 纯数学 内科学 生物
作者
A. Chempak Kumar,D. Muhammad Noorul Mubarak
出处
期刊:Cognitive science and technology 卷期号:: 87-98
标识
DOI:10.1007/978-981-99-2746-3_10
摘要

Gastrointestinal cancer is the sixth most prevalent cancer affecting millions of people across the globe. In 2020, an estimated 1089,103 (5.6%) new cases, and 768,793 (7.7%) deaths were reported; hence, the early diagnosis of this type of cancer is one of the highest priorities for healthcare workers. Advanced technologies like Deep Learning have rapidly revolutionized the medical industry and can help detect cancers in the human body. The major drawback of Deep Learning is its black-box approach, where the decision-making methodology of complex algorithms is difficult to comprehend. The enigmatic nature of AI decisions can have disastrous implications, especially in the medical field. The Explainable Artificial Intelligence (XAI) technique is proposed to overcome this drawback, which helps to decipher the reasons behind the decisions made by machine learning algorithms. The current paper has made an effort to detect gastrointestinal cancer using Deep Learning methods (ResNet50, AlexNet, GoogLeNet) and XAI methods (Saliency, Gradients, Shape features). The models created are then evaluated using parameters like accuracy, sensitivity, specificity, recall, and precision over the Kaggle dataset. To further enhance the accuracy in the early diagnosis of cancer, Local Interpretable Model-agnostic Explanation (LIME) is employed to determine the score, and the important regions of the images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
2秒前
zorro3574完成签到,获得积分10
2秒前
4秒前
huba完成签到,获得积分10
5秒前
CC发布了新的文献求助10
9秒前
Billy应助luc采纳,获得20
10秒前
杳鸢应助hurys采纳,获得10
11秒前
朴素的如豹完成签到,获得积分10
11秒前
研友_ndkyVL完成签到,获得积分10
12秒前
13秒前
16秒前
17秒前
17秒前
PP完成签到,获得积分20
18秒前
20秒前
una发布了新的文献求助10
23秒前
QI发布了新的文献求助10
25秒前
FashionBoy应助CC采纳,获得10
25秒前
27秒前
28秒前
小于一完成签到 ,获得积分10
28秒前
29秒前
哈哈哥发布了新的文献求助10
30秒前
脑洞疼应助QI采纳,获得10
31秒前
熹任发布了新的文献求助30
32秒前
WATeam完成签到,获得积分10
33秒前
wsgdhz发布了新的文献求助10
34秒前
赵焱峥完成签到,获得积分10
35秒前
Jasper应助幽默金鱼采纳,获得30
35秒前
所所应助朱子采纳,获得10
36秒前
37秒前
39秒前
WWWW完成签到,获得积分10
39秒前
sjc关闭了sjc文献求助
40秒前
手机应助g0123采纳,获得10
44秒前
lkkkkkk发布了新的文献求助10
45秒前
杳鸢应助潇洒的尔风采纳,获得30
46秒前
48秒前
英俊的铭应助雨过天晴采纳,获得10
49秒前
51秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267805
求助须知:如何正确求助?哪些是违规求助? 2907197
关于积分的说明 8340974
捐赠科研通 2577906
什么是DOI,文献DOI怎么找? 1401256
科研通“疑难数据库(出版商)”最低求助积分说明 655013
邀请新用户注册赠送积分活动 634036